@@ -52,14 +52,11 @@ class FlatBuffersWriter(IndentWriterBase): | |||
name = p + e | |||
e = self._enums[(p, e)] | |||
self._write_doc(e.name) | |||
self._write("enum %s%s : uint {", p, e.name, indent=1) | |||
attribute = "(bit_flags)" if e.combined else "" | |||
self._write("enum %s%s : uint %s {", p, e.name, attribute, indent=1) | |||
for idx, member in enumerate(e.members): | |||
self._write_doc(member) | |||
if e.combined: | |||
self._write("%s=%d,", scramble_enum_member_name(str(member)), | |||
1<<idx) | |||
else: | |||
self._write("%s,", scramble_enum_member_name(str(member))) | |||
self._write("%s,", scramble_enum_member_name(str(member))) | |||
self._write("}\n", indent=-1) | |||
def _write_doc(self, doc): | |||
@@ -97,8 +94,11 @@ class FlatBuffersWriter(IndentWriterBase): | |||
return | |||
self._write_doc(e.name) | |||
self._used_enum.add(key) | |||
self._write("%s:%s%s = %s;", e.name_field, p.name, e.name, | |||
scramble_enum_member_name(str(e.members[e.default]))) | |||
if e.combined: | |||
default = e.compose_combined_enum(e.default) | |||
else: | |||
default = scramble_enum_member_name(str(e.members[e.default])) | |||
self._write("%s:%s%s = %s;", e.name_field, p.name, e.name, default) | |||
def _resolve_const(self, v): | |||
while v in self._cur_const_val: | |||
@@ -120,9 +120,12 @@ class FlatBuffersWriter(IndentWriterBase): | |||
return | |||
self._used_enum.add((e.src_class, e.src_name)) | |||
enum_name = e.src_class + e.src_name | |||
self._write( | |||
"%s:%s = %s;", e.name_field, enum_name, | |||
scramble_enum_member_name(str(e.src_enum.members[e.get_default()]))) | |||
s = e.src_enum | |||
if s.combined: | |||
default = s.compose_combined_enum(e.get_default()) | |||
else: | |||
default = scramble_enum_member_name(str(s.members[e.get_default()])) | |||
self._write("%s:%s = %s;", e.name_field, enum_name, default) | |||
def _get_fb_default(self, cppdefault): | |||
if not isinstance(cppdefault, str): | |||
@@ -73,11 +73,21 @@ class member_defs: | |||
"""define an enum; the result would contain both an enum class def and its | |||
corresponding data field | |||
:param default: index of default member value | |||
:param default: | |||
for normal enum class: index of default member value | |||
for bit combined class: tuple of index of default member value | |||
For example, following representations of the default value for bit | |||
combined class are all equivalent: | |||
Enum(members=('a', 'b', 'c'), default=('a', 'b'), ...) | |||
Enum(members=('a', 'b', 'c'), default=(0, 1), ...) | |||
Enum(members=('a', 'b', 'c'), default=(1 << 0) | (1 << 1), ...) | |||
:attr name_field: name of the data field of this enum in the param | |||
struct | |||
:attr member_alias: list of (member, alias) pairs | |||
:attr member_alias: | |||
for normal enum class: list of (member, alias) pairs | |||
for bit combined class: list of (tuple of members, alias) paris | |||
""" | |||
__slots__ = ['name', 'name_field', 'members', 'default', | |||
'member_alias', 'combined'] | |||
@@ -90,17 +100,11 @@ class member_defs: | |||
name = member_defs.Doc.make(name) | |||
assert name.id[0].isupper() | |||
members = tuple(map(member_defs.Doc.make, members)) | |||
if isinstance(default, str): | |||
if default not in name_field: | |||
raise ValueError( | |||
"Default value '{}' does not exist.".format(default)) | |||
default = name_field.index(default) | |||
assert isinstance(default, int) | |||
self.name = name | |||
self.combined = combined | |||
self.name_field = self.get_name_field(name.id, name_field) | |||
self.members = members | |||
self.default = default | |||
self.default = self.normalize_enum_value(default) | |||
self.all_enums[(param_name, name.id)] = self | |||
@@ -114,6 +118,43 @@ class member_defs: | |||
assert isinstance(name_field, str) | |||
return name_field | |||
def normalize_enum_value(self, value): | |||
def normalize(v): | |||
if isinstance(v, str): | |||
if v not in self.members: | |||
raise ValueError( | |||
"enum member '{}' does not exist.".format(v)) | |||
v = self.members.index(v) | |||
assert isinstance(v, int) | |||
return v | |||
if self.combined: | |||
if isinstance(value, int): | |||
value = self.decompose_combined_enum(value) | |||
assert isinstance(value, tuple) | |||
value = tuple(normalize(i) for i in value) | |||
return value | |||
else: | |||
return normalize(value) | |||
@staticmethod | |||
def decompose_combined_enum(v): | |||
"""Integer => tuple of the indexes of the enum members""" | |||
assert isinstance(v, int) | |||
idx = 0 | |||
members = [] | |||
while v > 0: | |||
if v & 1: | |||
members.append(idx) | |||
idx += 1 | |||
v >>= 1 | |||
return tuple(members) | |||
def compose_combined_enum(self, v): | |||
"""tuple of members => Integer""" | |||
assert self.combined and isinstance(v, tuple) | |||
norm_v = self.normalize_enum_value(v) | |||
return sum(1 << i for i in norm_v) | |||
class Field(Base): | |||
"""define a normal data field""" | |||
__slots__ = ['name', 'dtype', 'default'] | |||
@@ -146,6 +187,10 @@ class member_defs: | |||
src_name = name | |||
self.src_name = src_name | |||
self.default = default | |||
# TODO: remove this assertion if needed; adding mock param_defs in | |||
# current testing framework is too complicated, and currently we | |||
# only allow aliasing of normal enum | |||
assert not self.src_enum.combined | |||
@property | |||
def src_enum(self): | |||
@@ -157,7 +202,7 @@ class member_defs: | |||
set""" | |||
if self.default is None: | |||
return self.src_enum.default | |||
return self.default | |||
return self.src_enum.normalize_enum_value(self.default) | |||
class ParamDef: | |||
@@ -198,7 +243,7 @@ class ParamDef: | |||
self.name.id, name, name_field, members, default, member_alias)) | |||
return self | |||
def add_bit_combination_enum(self, name, *members, default=0, | |||
def add_bit_combination_enum(self, name, *members, default=tuple(), | |||
name_field=None, member_alias=[]): | |||
self.members.append(member_defs.Enum( | |||
self.name.id, name, name_field, members, default, member_alias, True)) | |||
@@ -322,11 +367,13 @@ class PyWriter(IndentWriterBase): | |||
' for idx, v in enumerate(pdata):\n' | |||
' if isinstance(v, _EnumBase):\n' | |||
' pdata[idx] = _enum_member2num[id(v)]\n' | |||
' elif isinstance(v, _BitCombinedEnumBase):\n' | |||
' pdata[idx] = v._value_\n' | |||
' return tag + self._packer.pack(*pdata)\n' | |||
'\n' | |||
) | |||
self._write( | |||
'class _EnumBase(enum.Enum):\n' | |||
# it's hard to mix custom implemention into enum, just do copy-paste instead | |||
classbody = ( | |||
' @classmethod\n' | |||
' def __normalize(cls, val):\n' | |||
' if isinstance(val, str):\n' | |||
@@ -349,6 +396,12 @@ class PyWriter(IndentWriterBase): | |||
' return super()._missing_(value)\n' | |||
'\n' | |||
) | |||
self._write( | |||
'class _EnumBase(enum.Enum):\n' + classbody | |||
) | |||
self._write( | |||
'class _BitCombinedEnumBase(enum.Flag):\n' + classbody | |||
) | |||
if not self._imperative: | |||
self._write( | |||
'def _as_dtype_num(dtype):\n' | |||
@@ -464,30 +517,42 @@ class SerializedDType(_ParamDefBase): | |||
def _on_member_enum(self, e): | |||
qualname = '{}.{}'.format(self._cur_param_name, e.name) | |||
self._write('class %s(_EnumBase):', e.name, indent=1) | |||
if e.combined: | |||
self._write('class %s(_BitCombinedEnumBase):', e.name, indent=1) | |||
else: | |||
self._write('class %s(_EnumBase):', e.name, indent=1) | |||
self._write_doc(e.name) | |||
for idx, emem in enumerate(e.members): | |||
self._write('%s = "%s"', emem, emem) | |||
self._write_doc(emem) | |||
if e.combined: | |||
self._enum_member2num.append('id({}.{}):{}'.format( | |||
qualname, emem, 1<<idx)) | |||
self._write('%s = 1 << %d', emem, idx) | |||
self._write_doc(emem) | |||
else: | |||
self._write('%s = "%s"', emem, emem) | |||
self._write_doc(emem) | |||
self._enum_member2num.append('id({}.{}):{}'.format( | |||
qualname, emem, idx)) | |||
for emem, emem_alis in e.member_alias: | |||
self._write('%s = %s', emem_alis, emem) | |||
for emem, emem_alias in e.member_alias: | |||
if e.combined: | |||
self._write('%s = %s', emem_alias, e.compose_combined_enum(emem)) | |||
else: | |||
self._write('%s = %s', emem_alias, emem) | |||
self._unindent() | |||
self._write('') | |||
if e.combined: | |||
default = e.compose_combined_enum(e.default) | |||
else: | |||
default = "'{}'".format(e.members[e.default]) | |||
self._cur_fields.append(self.FieldDef( | |||
name=e.name_field, | |||
cvt='{}.convert({})'.format(qualname, e.name_field), | |||
fmt='I', | |||
default="'{}'".format(e.members[e.default]), | |||
default=default, | |||
type=qualname, | |||
doc=None)) | |||
@@ -495,11 +560,16 @@ class SerializedDType(_ParamDefBase): | |||
self._write('%s = %s.%s', e.name, e.src_class, e.src_name) | |||
s = e.src_enum | |||
qualname = '{}.{}'.format(e.src_class, e.src_name) | |||
if s.combined: | |||
default = s.compose_combined_enum(e.get_default()) | |||
else: | |||
default = "'{}'".format(s.members[e.get_default()]) | |||
self._cur_fields.append(self.FieldDef( | |||
name=e.name_field, | |||
cvt='{}.convert({})'.format(qualname, e.name_field), | |||
fmt='I', | |||
default="'{}'".format(s.members[e.get_default()]), | |||
default=default, | |||
type=qualname, | |||
doc=None)) | |||
@@ -639,14 +709,19 @@ class CPPWriter(IndentWriterBase): | |||
v += ',' | |||
self._write(v) | |||
for mem, alias in e.member_alias: | |||
self._write('%s = %s,', alias, mem) | |||
if e.combined: | |||
self._write('%s = %s,', alias, e.compose_combined_enum(mem)) | |||
else: | |||
self._write('%s = %s,', alias, mem) | |||
self._write('};', indent=-1) | |||
self._non_static_members.append(e) | |||
self._write('static MEGDNN_CONSTEXPR uint32_t %s_NR_MEMBER = %d;', | |||
str(e.name).upper(), len(e.members)) | |||
self._add_ctor_args(e.name, | |||
'{}::{}'.format(e.name, e.members[e.default]), | |||
e.name_field) | |||
if e.combined: | |||
default = 'static_cast<{}>({})'.format(e.name, e.compose_combined_enum(e.default)) | |||
else: | |||
default = '{}::{}'.format(e.name, e.members[e.default]) | |||
self._add_ctor_args(e.name, default, e.name_field) | |||
def _on_member_enum_alias(self, e): | |||
s = e.src_enum | |||
@@ -654,10 +729,11 @@ class CPPWriter(IndentWriterBase): | |||
self._non_static_members.append(e) | |||
self._write('static MEGDNN_CONSTEXPR uint32_t %s_NR_MEMBER = %d;', | |||
str(e.name).upper(), len(s.members)) | |||
self._add_ctor_args(e.name, | |||
'{}::{}'.format(e.name, | |||
s.members[e.get_default()]), | |||
e.name_field) | |||
if s.combined: | |||
default = 'static_cast<{}>({})'.format(e.name, s.compose_combined_enum(e.default)) | |||
else: | |||
default = '{}::{}'.format(e.name, s.members[e.get_default()]) | |||
self._add_ctor_args(e.name, default, e.name_field) | |||
def _on_member_field(self, f): | |||
self._non_static_members.append(f) | |||
@@ -106,7 +106,12 @@ class ConverterWriter(IndentWriterBase): | |||
return | |||
# wrapped with default value | |||
default_val = "static_cast<{}::{}>({})".format(fullname, e.name, e.default) | |||
if e.combined: | |||
default_val = "static_cast<{}::{}>({})".format( | |||
fullname, e.name, e.compose_combined_enum(e.default)) | |||
else: | |||
default_val = "{}::{}::{}".format(fullname, e.name, e.members[e.default]) | |||
wrapped = self._wrapped_with_default_value(td_class, default_val) | |||
self._current_tparams.append("{}:${}".format(wrapped, e.name_field)) | |||
@@ -124,7 +129,13 @@ class ConverterWriter(IndentWriterBase): | |||
self._write("def {} : {};".format(td_class, enum_def)) | |||
# wrapped with default value | |||
default_val = "static_cast<{}::{}>({})".format(fullname, e.name, e.get_default()) | |||
s = e.src_enum | |||
if s.combined: | |||
default_val = "static_cast<{}::{}>({})".format( | |||
fullname, e.name, s.compose_combined_enum(e.get_default())) | |||
else: | |||
default_val = "{}::{}::{}".format(fullname, e.name, s.members[e.get_default()]) | |||
wrapped = self._wrapped_with_default_value(td_class, default_val) | |||
self._current_tparams.append("{}:${}".format(wrapped, e.name_field)) | |||
@@ -185,7 +185,7 @@ SmallVector<AlgoCategory> ConvBiasImpl::suggest_algo_category_order( | |||
} | |||
//! conv1x1 | |||
im2col_prefer |= (FH == 1 && FW == 1); | |||
//! x86 8x8x16 not optmized, so it will use fallback im2col+matmul | |||
//! x86 8x8x16 not optimized, so it will use fallback im2col+matmul | |||
if (param.deduce_algo_data_type() == AlgoDataType::INT8X8X16) { | |||
im2col_prefer = true; | |||
} | |||
@@ -8,6 +8,9 @@ | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
import numpy as np | |||
from .._imperative_rt import make_const | |||
from .._imperative_rt.core2 import SymbolVar, Tensor | |||
class Const: | |||
def __init__(self, value=None, *, dtype=None, device=None): | |||
@@ -19,7 +22,19 @@ class Const: | |||
from ...tensor import Tensor | |||
device = self.device | |||
if device is None: | |||
device = reference[0].device | |||
if len(reference) != 0: | |||
reference = reference[0] | |||
assert isinstance( | |||
reference, (SymbolVar, Tensor) | |||
), "Reference should be Tensor or VarNode" | |||
if device is None: | |||
device = reference.device | |||
if isinstance(reference, SymbolVar): | |||
cls = type(reference) | |||
rst = cls(make_const(reference.graph, self.value, device, self.dtype)) | |||
return (rst,) | |||
return (Tensor(self.value, self.dtype, self.device, True),) |
@@ -13,7 +13,7 @@ from typing import Union | |||
import numpy as np | |||
from .._imperative_rt.common import CompNode | |||
from .._imperative_rt.core2 import Tensor, apply | |||
from .._imperative_rt.core2 import SymbolVar, Tensor, apply | |||
from ..ops import builtin | |||
from ..ops.builtin import Elemwise, GetVarShape | |||
from . import utils | |||
@@ -230,7 +230,9 @@ def _todo(*_): | |||
def _expand_args(args): | |||
if len(args) == 1: | |||
if isinstance(args[0], (collections.abc.Sequence, Tensor, np.ndarray),): | |||
if isinstance( | |||
args[0], (collections.abc.Sequence, Tensor, SymbolVar, np.ndarray), | |||
): | |||
args = args[0] | |||
return args | |||
@@ -5,6 +5,7 @@ | |||
# Unless required by applicable law or agreed to in writing, | |||
# software distributed under the License is distributed on an | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
import re | |||
from collections import namedtuple | |||
from typing import Union | |||
@@ -22,6 +23,12 @@ from .._imperative_rt.common import ( | |||
) | |||
def get_dtype_bit(dtype_name: str): | |||
numbers = re.findall(r"\d+", dtype_name) | |||
assert len(numbers) == 1, "Unsupport dtype name with more than one number." | |||
return int(numbers[0]) | |||
# normal dtype related | |||
def is_lowbit(dtype): | |||
return (dtype is intb1) or (dtype is intb2) or (dtype is intb4) | |||
@@ -10,7 +10,7 @@ from typing import Iterable | |||
import numpy as np | |||
from .._imperative_rt.core2 import Tensor, apply | |||
from .._imperative_rt.core2 import SymbolVar, Tensor, apply | |||
from .._trace_option import use_symbolic_shape | |||
from ..ops import builtin | |||
from ..ops.special import Const | |||
@@ -149,13 +149,13 @@ def unpack_getitem(inp, tuple_val, *, allow_newaxis=True): | |||
return True | |||
def get_index(i): | |||
if not isinstance(i, (Tensor)): | |||
if not isinstance(i, (Tensor, SymbolVar)): | |||
if is_bool_list(i) or isinstance(i, np.ndarray) and i.dtype == np.bool_: | |||
(i,) = Const(i, dtype=np.bool_, device=inp.device)() | |||
(i,) = Const(i, dtype=np.bool_, device=inp.device)(inp) | |||
else: | |||
(i,) = Const(i, dtype=np.int32, device=inp.device)() | |||
(i,) = Const(i, dtype=np.int32, device=inp.device)(inp) | |||
return i | |||
assert isinstance(i, Tensor) | |||
assert isinstance(i, (Tensor, SymbolVar)) | |||
if i.dtype != np.bool_: | |||
return i | |||
_, ind = apply(builtin.CondTake(), i, i) | |||
@@ -197,9 +197,9 @@ def try_condtake(tensor, index): | |||
): | |||
return [] | |||
if isinstance(index, np.ndarray): | |||
(index,) = Const(index, dtype=np.bool_, device=tensor.device)() | |||
assert isinstance(index, Tensor) | |||
if not isinstance(tensor, Tensor): | |||
(index,) = Const(index, dtype=np.bool_, device=tensor.device)(tensor) | |||
assert isinstance(index, (Tensor, SymbolVar)) | |||
if not isinstance(tensor, (Tensor, SymbolVar)): | |||
raise TypeError("input must be a tensor") | |||
if tensor.device != index.device: | |||
raise ValueError( | |||
@@ -214,11 +214,16 @@ def getitem(tensor, index): | |||
return try_result[0] | |||
tensor, tensors, items, use_subtensor, ret_scalar = unpack_getitem(tensor, index) | |||
for v in tensors: | |||
if v.shape is None: | |||
break | |||
if isinstance(v.shape, v.__class__): | |||
break | |||
if len(v.shape) > 0 and v.shape[0] == 0: | |||
(empty_tensor,) = Const([], dtype=tensor.dtype, device=tensor.device)() | |||
(empty_tensor,) = Const([], dtype=tensor.dtype, device=tensor.device)( | |||
tensor | |||
) | |||
return empty_tensor | |||
if use_subtensor: | |||
op = builtin.Subtensor(items=items) | |||
else: | |||
@@ -235,8 +240,8 @@ def setitem(tensor, index, value): | |||
if len(try_result) == 2: | |||
index = try_result[1] | |||
tensor = tensor.reshape(-1) | |||
if not isinstance(value, Tensor): | |||
(value,) = Const(value, dtype=tensor.dtype, device=tensor.device)() | |||
if not isinstance(value, (Tensor, SymbolVar)): | |||
(value,) = Const(value, dtype=tensor.dtype, device=tensor.device)(tensor) | |||
tensor, tensors, items, use_subtensor, _ = unpack_getitem(tensor, index) | |||
if use_subtensor: | |||
op = builtin.Subtensor(items=items) | |||
@@ -11,8 +11,9 @@ from typing import Iterable, Union | |||
import numpy as np | |||
from .._imperative_rt import VarNode | |||
from .._imperative_rt.core2 import Tensor, apply, dtype_promotion, get_device | |||
from .._imperative_rt import make_const | |||
from .._imperative_rt.core2 import SymbolVar, Tensor, apply, dtype_promotion, get_device | |||
from .._wrap import device as as_device | |||
from ..ops import builtin | |||
from ..ops.special import Const | |||
from .dtype import is_dtype_equal, is_quantize | |||
@@ -38,13 +39,9 @@ def set_convert_inputs(flag): | |||
def concatenate(inputs, axis=0, *, device=None): | |||
dtype = dtype_promotion(inputs) | |||
device = get_device(inputs) | |||
def convert(x): | |||
return convert_single_value(x, dtype=dtype, device=device) | |||
inputs = tuple(map(convert, inputs)) | |||
inputs = convert_inputs(*inputs) | |||
if device is None: | |||
device = get_device(inputs) | |||
(result,) = apply(builtin.Concat(axis=axis, comp_node=device), *inputs) | |||
return result | |||
@@ -60,7 +57,7 @@ def astype(x, dtype): | |||
def convert_single_value(v, *, dtype=None, device=None): | |||
if isinstance(v, (Tensor, VarNode)): | |||
if isinstance(v, (Tensor, SymbolVar)): | |||
if not is_quantize(v.dtype): | |||
v = astype(v, dtype) | |||
else: | |||
@@ -68,17 +65,35 @@ def convert_single_value(v, *, dtype=None, device=None): | |||
return v | |||
def convert_inputs(*args: Tensor): | |||
def convert_inputs(*args, device=None): | |||
if not _enable_convert_inputs: | |||
return args | |||
dtype = dtype_promotion(args) | |||
device = get_device(args) | |||
if device is None: | |||
device = get_device(args) | |||
device = as_device(device) | |||
graph = None | |||
sym_type = None | |||
for a in args: | |||
if isinstance(a, SymbolVar): | |||
if graph is None: | |||
graph = a.var.graph | |||
sym_type = type(a) | |||
else: | |||
assert graph == a.var.graph | |||
args = list(args) | |||
if graph is not None: | |||
for i in range(len(args)): | |||
if not isinstance(args[i], SymbolVar): | |||
rst = make_const(graph, np.array(args[i]), device.to_c(), dtype) | |||
args[i] = sym_type(rst) | |||
def convert(value): | |||
if value is None: | |||
return value | |||
return convert_single_value(value, dtype=dtype, device=device) | |||
return convert_single_value(value, dtype=dtype, device=device.to_c()) | |||
return tuple(map(convert, args)) | |||
@@ -98,14 +113,14 @@ def result_type(*args): | |||
def isscalar(x): | |||
if isinstance(x, Tensor): | |||
if isinstance(x, (Tensor, SymbolVar)): | |||
return x._isscalar() | |||
return np.isscalar(x) | |||
def setscalar(x): | |||
if isinstance(x, Tensor): | |||
if isinstance(x, (Tensor, SymbolVar)): | |||
x._setscalar() | |||
else: | |||
raise NotImplementedError("Unsupport type {}".format(type(x))) | |||
@@ -132,7 +147,7 @@ def astensor1d(x, *reference, dtype=None, device=None): | |||
if not isinstance(x, collections.abc.Sequence): | |||
raise TypeError | |||
if any(isinstance(i, Tensor) for i in x): | |||
if any(isinstance(i, (Tensor, SymbolVar)) for i in x): | |||
x = concatenate(x, device=device) | |||
if dtype is not None: | |||
x = astype(x, dtype) | |||
@@ -142,7 +157,7 @@ def astensor1d(x, *reference, dtype=None, device=None): | |||
def _expand_int(s, i): | |||
if isinstance(i, Tensor): | |||
if isinstance(i, (Tensor, SymbolVar)): | |||
i_np = i.numpy() | |||
if i_np.ndim == 0: | |||
s.append(int(i_np)) | |||
@@ -40,7 +40,7 @@ def set_execution_strategy(option): | |||
* HEURISTIC uses heuristic to choose the fastest algorithm. | |||
* PROFILE runs possible algorithms on real device to find the best one. | |||
* REPRODUCIBLE uses the algorithms that is reproducible. | |||
* OPTMIZED uses the algorithms that is optimized. | |||
* OPTIMIZED uses the algorithms that is optimized. | |||
The default strategy is HEURISTIC, this options can be combined to | |||
form a combination option, e.g. PROFILE | REPRODUCIBLE | |||
@@ -9,8 +9,7 @@ | |||
# pylint: disable=unused-argument,invalid-name,redefined-builtin,arguments-out-of-order | |||
import numpy as np | |||
from ..core._imperative_rt.core2 import apply | |||
from ..core._imperative_rt.graph import VarNode | |||
from ..core._imperative_rt.core2 import SymbolVar, apply | |||
from ..core.ops import builtin | |||
from ..core.ops.builtin import Elemwise | |||
from ..core.tensor import utils | |||
@@ -72,7 +71,7 @@ __all__ = [ | |||
def _elwise(*args, mode): | |||
tensor_args = list(filter(lambda x: isinstance(x, (Tensor, VarNode)), args)) | |||
tensor_args = list(filter(lambda x: isinstance(x, (Tensor, SymbolVar)), args)) | |||
if len(tensor_args) == 0: | |||
dtype = utils.dtype_promotion(args) | |||
first_arg = Tensor(args[0], dtype=dtype, device=get_default_device()) | |||
@@ -12,7 +12,7 @@ from typing import Iterable, Optional, Sequence, Union | |||
import numpy as np | |||
from ..core._imperative_rt import CompNode | |||
from ..core._imperative_rt.core2 import apply | |||
from ..core._imperative_rt.core2 import SymbolVar, apply | |||
from ..core._wrap import device as as_device | |||
from ..core.ops import builtin | |||
from ..core.ops.builtin import Copy, Identity | |||
@@ -101,7 +101,7 @@ def eye(N, M=None, *, dtype="float32", device: Optional[CompNode] = None) -> Ten | |||
return result | |||
def full(shape, value, dtype="float32", device=None): | |||
def full(shape, value, dtype="float32", device=None) -> Tensor: | |||
""" | |||
Returns a tensor with given shape and value. | |||
""" | |||
@@ -115,7 +115,7 @@ def full(shape, value, dtype="float32", device=None): | |||
return broadcast_to(x, shape) | |||
def ones(shape, dtype="float32", device=None): | |||
def ones(shape, dtype="float32", device=None) -> Tensor: | |||
""" | |||
Returns a ones tensor with given shape. | |||
@@ -142,14 +142,14 @@ def ones(shape, dtype="float32", device=None): | |||
return full(shape, 1.0, dtype=dtype, device=device) | |||
def zeros(shape, dtype="float32", device=None): | |||
def zeros(shape, dtype="float32", device=None) -> Tensor: | |||
""" | |||
Returns a zero tensor with given shape. | |||
""" | |||
return full(shape, 0.0, dtype=dtype, device=device) | |||
def zeros_like(inp: Tensor) -> Tensor: | |||
def zeros_like(inp: Union[Tensor, SymbolVar]) -> Union[Tensor, SymbolVar]: | |||
""" | |||
Returns a zero tensor with the same shape as input tensor. | |||
@@ -176,21 +176,26 @@ def zeros_like(inp: Tensor) -> Tensor: | |||
[0 0 0]] | |||
""" | |||
return zeros(inp.shape, dtype=inp.dtype, device=inp.device) | |||
return full_like(inp, 0.0) | |||
def ones_like(inp: Tensor) -> Tensor: | |||
def ones_like(inp: Union[Tensor, SymbolVar]) -> Union[Tensor, SymbolVar]: | |||
""" | |||
Returns a ones tensor with the same shape as input tensor. | |||
""" | |||
return ones(inp.shape, dtype=inp.dtype, device=inp.device) | |||
return full_like(inp, 1.0) | |||
def full_like(inp: Tensor, value: Union[int, float]) -> Tensor: | |||
def full_like( | |||
inp: Union[Tensor, SymbolVar], value: Union[int, float] | |||
) -> Union[Tensor, SymbolVar]: | |||
""" | |||
Returns a tensor filled with given value with the same shape as input tensor. | |||
""" | |||
return full(inp.shape, value, dtype=inp.dtype, device=inp.device) | |||
(x,) = Const(value, dtype=inp.dtype, device=inp.device)(inp) | |||
if inp.shape is (): | |||
return x | |||
return broadcast_to(x, inp.shape) | |||
def broadcast_to(inp: Tensor, shape: Union[int, Iterable[int]]) -> Tensor: | |||
@@ -259,15 +264,10 @@ def concat(inps: Iterable[Tensor], axis: int = 0, device=None) -> Tensor: | |||
if len(inps) == 1: | |||
return inps[0] | |||
dtype = dtype_promotion(inps) | |||
inps = convert_inputs(*inps, device=device) | |||
if device is None: | |||
device = get_device(inps) | |||
device = as_device(device) | |||
def convert(x): | |||
return convert_single_value(x, dtype=dtype, device=device) | |||
inps = tuple(map(convert, inps)) | |||
(result,) = apply(builtin.Concat(axis=axis, comp_node=device.to_c()), *inps) | |||
return result | |||
@@ -379,8 +379,14 @@ def split(inp, nsplits_or_sections, axis=0): | |||
Ntotal, axis, Nsections | |||
) | |||
) | |||
func = ( | |||
floor_div | |||
if isinstance(Nsections, (SymbolVar, Tensor)) | |||
else lambda x, y: x // y | |||
) | |||
div_points = [0] + [ | |||
floor_div(Ntotal + Nsections - i - 1, Nsections) for i in range(Nsections) | |||
func(Ntotal + Nsections - i - 1, Nsections) for i in range(Nsections) | |||
] | |||
for i in range(2, Nsections + 1): | |||
div_points[i] = div_points[i - 1] + div_points[i] | |||
@@ -925,11 +931,15 @@ def linspace( | |||
if not (cur_device is None or device == cur_device): | |||
raise ("ambiguous device for linspace opr") | |||
if not isinstance(start, Tensor): | |||
is_symbolvar = list(isinstance(x, SymbolVar) for x in [start, stop, num]) | |||
if any(is_symbolvar) and not all(is_symbolvar): | |||
raise TypeError("start, stop and num should all be VarNode or none of them") | |||
if not isinstance(start, (Tensor, SymbolVar)): | |||
start = Tensor(start, device=device) | |||
if not isinstance(stop, Tensor): | |||
if not isinstance(stop, (Tensor, SymbolVar)): | |||
stop = Tensor(stop, device=device) | |||
if not isinstance(num, Tensor): | |||
if not isinstance(num, (Tensor, SymbolVar)): | |||
num = Tensor(num, device=device) | |||
op = builtin.Linspace(comp_node=device) | |||
@@ -983,7 +993,7 @@ def arange( | |||
stop = stop.astype("float32") | |||
if isinstance(step, Tensor): | |||
step = step.astype("float32") | |||
num = ceil(Tensor((stop - start) / step, device=device)) | |||
num = ceil((stop - start) / step) | |||
stop = start + step * (num - 1) | |||
result = linspace(start, stop, num, device=device) | |||
if np.dtype(dtype) == np.int32: | |||
@@ -607,10 +607,10 @@ class Module(metaclass=ABCMeta): | |||
def __getattribute__(self, name: str): | |||
value = super().__getattribute__(name) | |||
if name == "_name": | |||
if name == "__dict__": | |||
return value | |||
if isinstance(value, (Tensor, Module)): | |||
value._name = name | |||
for prefix, variable in _expand_structure(name, value): | |||
variable._name = prefix | |||
return value | |||
def __setattr__(self, name: str, value): | |||
@@ -23,7 +23,7 @@ class Concat(QuantizedModule): | |||
self.output_dtype = dtype | |||
def forward(self, inps: Iterable[Tensor], axis: int = 0): | |||
new_inps = (x.astype(self.output_dtype) for x in inps) | |||
new_inps = tuple(x.astype(self.output_dtype) for x in inps) | |||
return F.concat(new_inps, axis) | |||
@classmethod | |||
@@ -92,6 +92,7 @@ class Sequential(Module): | |||
return [getattr(self, key) for key in self.layer_keys] | |||
def forward(self, inp): | |||
for layer in self.layer_values: | |||
# avoid layer_values as a name prefix, see Module.__getattribute__ | |||
for layer in [getattr(self, key) for key in self.layer_keys]: | |||
inp = layer(inp) | |||
return inp |
@@ -6,6 +6,7 @@ | |||
# Unless required by applicable law or agreed to in writing, | |||
# software distributed under the License is distributed on an | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
import copy | |||
from abc import ABCMeta, abstractmethod | |||
from collections.abc import Iterable | |||
from typing import Dict | |||
@@ -197,10 +198,11 @@ class Optimizer(metaclass=ABCMeta): | |||
cur_id += 1 | |||
for param, st in self._state.items(): | |||
_st = copy.copy(st) | |||
if not keep_var: | |||
for k, v in st.items(): | |||
st[k] = v.numpy() | |||
state[param2id[param]] = st | |||
_st[k] = v.numpy() | |||
state[param2id[param]] = _st | |||
for group in self.param_groups: | |||
param_group = {k: v for k, v in group.items() if k != "params"} | |||
@@ -6,8 +6,16 @@ | |||
# software distributed under the License is distributed on an | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
from .fake_quant import FakeQuantize | |||
from .observer import Observer | |||
from .fake_quant import TQT, FakeQuantize | |||
from .observer import ( | |||
ExponentialMovingAverageObserver, | |||
HistogramObserver, | |||
MinMaxObserver, | |||
Observer, | |||
PassiveObserver, | |||
SyncExponentialMovingAverageObserver, | |||
SyncMinMaxObserver, | |||
) | |||
from .qconfig import ( | |||
QConfig, | |||
calibration_qconfig, | |||
@@ -8,14 +8,19 @@ | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
import argparse | |||
import logging | |||
import re | |||
import numpy as np | |||
from megengine.core.tensor.dtype import is_quantize | |||
from megengine.logger import _imperative_rt_logger, get_logger, set_mgb_log_level | |||
from megengine.utils.module_stats import ( | |||
print_flops_stats, | |||
print_params_stats, | |||
enable_receptive_field, | |||
get_op_stats, | |||
get_param_stats, | |||
print_op_stats, | |||
print_param_stats, | |||
print_summary, | |||
sizeof_fmt, | |||
) | |||
from megengine.utils.network import Network | |||
@@ -40,34 +45,41 @@ def visualize( | |||
:param log_params: whether print and record params size. | |||
:param log_flops: whether print and record op flops. | |||
""" | |||
try: | |||
from tensorboard.compat.proto.attr_value_pb2 import AttrValue | |||
from tensorboard.compat.proto.config_pb2 import RunMetadata | |||
from tensorboard.compat.proto.graph_pb2 import GraphDef | |||
from tensorboard.compat.proto.node_def_pb2 import NodeDef | |||
from tensorboard.compat.proto.step_stats_pb2 import ( | |||
AllocatorMemoryUsed, | |||
DeviceStepStats, | |||
NodeExecStats, | |||
StepStats, | |||
) | |||
from tensorboard.compat.proto.tensor_shape_pb2 import TensorShapeProto | |||
from tensorboard.compat.proto.versions_pb2 import VersionDef | |||
from tensorboardX import SummaryWriter | |||
except ImportError: | |||
logger.error( | |||
"TensorBoard and TensorboardX are required for visualize.", exc_info=True | |||
) | |||
return | |||
if log_path: | |||
try: | |||
from tensorboard.compat.proto.attr_value_pb2 import AttrValue | |||
from tensorboard.compat.proto.config_pb2 import RunMetadata | |||
from tensorboard.compat.proto.graph_pb2 import GraphDef | |||
from tensorboard.compat.proto.node_def_pb2 import NodeDef | |||
from tensorboard.compat.proto.step_stats_pb2 import ( | |||
AllocatorMemoryUsed, | |||
DeviceStepStats, | |||
NodeExecStats, | |||
StepStats, | |||
) | |||
from tensorboard.compat.proto.tensor_shape_pb2 import TensorShapeProto | |||
from tensorboard.compat.proto.versions_pb2 import VersionDef | |||
from tensorboardX import SummaryWriter | |||
except ImportError: | |||
logger.error( | |||
"TensorBoard and TensorboardX are required for visualize.", | |||
exc_info=True, | |||
) | |||
return | |||
# FIXME: remove this after resolving "span dist too large" warning | |||
old_level = set_mgb_log_level(logging.ERROR) | |||
enable_receptive_field() | |||
graph = Network.load(model_path) | |||
writer = SummaryWriter(log_path) | |||
def process_name(name): | |||
return name.replace(".", "/").encode(encoding="utf-8") | |||
# nodes that start with point or contain float const will lead to display bug | |||
if not re.match(r"^[+-]?\d*\.\d*", name): | |||
name = name.replace(".", "/") | |||
return name.encode(encoding="utf-8") | |||
summary = [["item", "value"]] | |||
node_list = [] | |||
flops_list = [] | |||
params_list = [] | |||
@@ -84,78 +96,90 @@ def visualize( | |||
node_oup = node.outputs[0] | |||
inp_list = [process_name(var.owner.name) for var in node.inputs] | |||
attr = { | |||
"_output_shapes": AttrValue( | |||
list=AttrValue.ListValue( | |||
shape=[ | |||
TensorShapeProto( | |||
dim=[TensorShapeProto.Dim(size=d) for d in node_oup.shape] | |||
) | |||
] | |||
) | |||
), | |||
} | |||
if hasattr(node, "calc_flops"): | |||
flops_num = node.calc_flops() | |||
if log_path: | |||
# detail format see tensorboard/compat/proto/attr_value.proto | |||
attr = { | |||
"_output_shapes": AttrValue( | |||
list=AttrValue.ListValue( | |||
shape=[ | |||
TensorShapeProto( | |||
dim=[ | |||
TensorShapeProto.Dim(size=d) for d in node_oup.shape | |||
] | |||
) | |||
] | |||
) | |||
), | |||
"params": AttrValue(s=str(node.params).encode(encoding="utf-8")), | |||
"dtype": AttrValue(s=str(node_oup.dtype).encode(encoding="utf-8")), | |||
} | |||
flops_stats = get_op_stats(node, node.inputs, node.outputs) | |||
if flops_stats is not None: | |||
# add op flops attr | |||
attr["flops"] = AttrValue(s=sizeof_fmt(flops_num).encode(encoding="utf-8")) | |||
flops_list.append( | |||
dict( | |||
name=node.name, | |||
class_name=node.type, | |||
input_shapes=[i.shape for i in node.inputs], | |||
output_shapes=[o.shape for o in node.outputs], | |||
flops_num=flops_num, | |||
flops_cum=0, | |||
if log_path and hasattr(flops_stats, "flops_num"): | |||
attr["flops"] = AttrValue( | |||
s=sizeof_fmt(flops_stats["flops"]).encode(encoding="utf-8") | |||
) | |||
) | |||
flops_stats["name"] = node.name | |||
flops_stats["class_name"] = node.type | |||
flops_list.append(flops_stats) | |||
if node.type == "ImmutableTensor": | |||
param_dim = np.prod(node_oup.shape) | |||
# TODO: consider other quantize dtypes | |||
param_bytes = 1 if is_quantize(node_oup.dtype) else 4 | |||
param_stats = get_param_stats(node.numpy()) | |||
# add tensor size attr | |||
attr["size"] = AttrValue( | |||
s=sizeof_fmt(param_dim * param_bytes).encode(encoding="utf-8") | |||
) | |||
params_list.append( | |||
dict( | |||
name=node.name, | |||
shape=node_oup.shape, | |||
param_dim=param_dim, | |||
bits=param_bytes * 8, | |||
size=param_dim * param_bytes, | |||
size_cum=0, | |||
mean="{:.2g}".format(node.numpy().mean()), | |||
std="{:.2g}".format(node.numpy().std()), | |||
if log_path: | |||
attr["size"] = AttrValue( | |||
s=sizeof_fmt(param_stats["size"]).encode(encoding="utf-8") | |||
) | |||
param_stats["name"] = node.name | |||
params_list.append(param_stats) | |||
if log_path: | |||
node_list.append( | |||
NodeDef( | |||
name=process_name(node.name), | |||
op=node.type, | |||
input=inp_list, | |||
attr=attr, | |||
) | |||
) | |||
# FIXME(MGE-2165): nodes outside network module may lead to unknown display bug | |||
if not len(node.name.split(".")) > 2 and not node in graph.input_vars: | |||
continue | |||
node_list.append( | |||
NodeDef( | |||
name=process_name(node.name), op=node.type, input=inp_list, attr=attr, | |||
) | |||
) | |||
# summary | |||
extra_info = { | |||
"#ops": len(graph.all_oprs), | |||
"#params": len(params_list), | |||
} | |||
total_flops, total_params = 0, 0 | |||
total_flops, total_param_dims, total_param_size = 0, 0, 0 | |||
if log_params: | |||
total_params = print_params_stats(params_list, bar_length_max) | |||
total_param_dims, total_param_size = print_param_stats( | |||
params_list, bar_length_max | |||
) | |||
extra_info["total_param_dims"] = sizeof_fmt(total_param_dims) | |||
extra_info["total_param_size"] = sizeof_fmt(total_param_size) | |||
if log_flops: | |||
total_flops = print_flops_stats(flops_list, bar_length_max) | |||
total_flops = print_op_stats(flops_list, bar_length_max) | |||
extra_info["total_flops"] = sizeof_fmt(total_flops, suffix="OPs") | |||
if log_params and log_flops: | |||
extra_info["flops/param_size"] = "{:3.3f}".format( | |||
total_flops / total_param_size | |||
) | |||
graph_def = GraphDef(node=node_list, versions=VersionDef(producer=22)) | |||
if log_path: | |||
graph_def = GraphDef(node=node_list, versions=VersionDef(producer=22)) | |||
device = "/device:CPU:0" | |||
stepstats = RunMetadata( | |||
step_stats=StepStats(dev_stats=[DeviceStepStats(device=device)]) | |||
) | |||
writer._get_file_writer().add_graph((graph_def, stepstats)) | |||
device = "/device:CPU:0" | |||
stepstats = RunMetadata( | |||
step_stats=StepStats(dev_stats=[DeviceStepStats(device=device)]) | |||
) | |||
writer = SummaryWriter(log_path) | |||
writer._get_file_writer().add_graph((graph_def, stepstats)) | |||
print_summary(**extra_info) | |||
# FIXME: remove this after resolving "span dist too large" warning | |||
_imperative_rt_logger.set_log_level(old_level) | |||
return total_params, total_flops | |||
return total_param_size, total_flops | |||
def main(): | |||
@@ -164,7 +188,7 @@ def main(): | |||
formatter_class=argparse.ArgumentDefaultsHelpFormatter, | |||
) | |||
parser.add_argument("model_path", help="dumped model path.") | |||
parser.add_argument("log_path", help="tensorboard log path.") | |||
parser.add_argument("--log_path", help="tensorboard log path.") | |||
parser.add_argument( | |||
"--bar_length_max", | |||
type=int, | |||
@@ -179,7 +203,20 @@ def main(): | |||
parser.add_argument( | |||
"--log_flops", action="store_true", help="whether print and record op flops.", | |||
) | |||
visualize(**vars(parser.parse_args())) | |||
parser.add_argument( | |||
"--all", | |||
action="store_true", | |||
help="whether print all stats. Tensorboard logs will be placed in './log' if not specified.", | |||
) | |||
args = parser.parse_args() | |||
if args.all: | |||
args.log_params = True | |||
args.log_flops = True | |||
if not args.log_path: | |||
args.log_path = "./log" | |||
kwargs = vars(args) | |||
kwargs.pop("all") | |||
visualize(**kwargs) | |||
if __name__ == "__main__": | |||
@@ -5,16 +5,17 @@ | |||
# Unless required by applicable law or agreed to in writing, | |||
# software distributed under the License is distributed on an | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
import contextlib | |||
from functools import partial | |||
import numpy as np | |||
import tabulate | |||
import megengine as mge | |||
import megengine.core.tensor.dtype as dtype | |||
import megengine.module as m | |||
import megengine.module.qat as qatm | |||
import megengine.module.quantized as qm | |||
from megengine.core.tensor.dtype import get_dtype_bit | |||
from megengine.functional.tensor import zeros | |||
try: | |||
@@ -26,61 +27,99 @@ logger = mge.get_logger(__name__) | |||
logger.setLevel("INFO") | |||
CALC_FLOPS = {} | |||
_calc_flops_dict = {} | |||
_calc_receptive_field_dict = {} | |||
def _register_modules(*modules): | |||
def _receptive_field_fallback(module, inputs, outputs): | |||
if not _receptive_field_enabled: | |||
return | |||
assert not hasattr(module, "_rf") | |||
assert not hasattr(module, "_stride") | |||
if len(inputs) == 0: | |||
# TODO: support other dimension | |||
module._rf = (1, 1) | |||
module._stride = (1, 1) | |||
return module._rf, module._stride | |||
rf, stride = preprocess_receptive_field(module, inputs, outputs) | |||
module._rf = rf | |||
module._stride = stride | |||
return rf, stride | |||
# key tuple, impl_dict, fallback | |||
_iter_list = [ | |||
("flops_num", _calc_flops_dict, None), | |||
( | |||
("receptive_field", "stride"), | |||
_calc_receptive_field_dict, | |||
_receptive_field_fallback, | |||
), | |||
] | |||
_receptive_field_enabled = False | |||
def _register_dict(*modules, dict=None): | |||
def callback(impl): | |||
for module in modules: | |||
CALC_FLOPS[module] = impl | |||
dict[module] = impl | |||
return impl | |||
return callback | |||
@_register_modules( | |||
m.Conv2d, | |||
m.ConvTranspose2d, | |||
m.LocalConv2d, | |||
qm.Conv2d, | |||
qm.ConvRelu2d, | |||
qm.ConvBn2d, | |||
qm.ConvBnRelu2d, | |||
qatm.Conv2d, | |||
qatm.ConvRelu2d, | |||
qatm.ConvBn2d, | |||
qatm.ConvBnRelu2d, | |||
def register_flops(*modules): | |||
return _register_dict(*modules, dict=_calc_flops_dict) | |||
def register_receptive_field(*modules): | |||
return _register_dict(*modules, dict=_calc_receptive_field_dict) | |||
def enable_receptive_field(): | |||
global _receptive_field_enabled | |||
_receptive_field_enabled = True | |||
def disable_receptive_field(): | |||
global _receptive_field_enabled | |||
_receptive_field_enabled = False | |||
@register_flops( | |||
m.Conv1d, m.Conv2d, m.Conv3d, m.ConvTranspose2d, m.LocalConv2d, m.DeformableConv2d | |||
) | |||
def count_convNd(module, input, output): | |||
def flops_convNd(module: m.Conv2d, inputs, outputs): | |||
bias = 1 if module.bias is not None else 0 | |||
group = module.groups | |||
ic = input[0].shape[1] | |||
oc = output[0].shape[1] | |||
goc = oc // group | |||
gic = ic // group | |||
N = output[0].shape[0] | |||
HW = np.prod(output[0].shape[2:]) | |||
# N x Cout x H x W x (Cin x Kw x Kh + bias) | |||
return N * HW * goc * (gic * np.prod(module.kernel_size) + bias) | |||
return np.prod(outputs[0].shape) * ( | |||
module.in_channels // module.groups * np.prod(module.kernel_size) + bias | |||
) | |||
@_register_modules(m.ConvTranspose2d) | |||
def count_deconvNd(module, input, output): | |||
return np.prod(input[0].shape) * output[0].shape[1] * np.prod(module.kernel_size) | |||
@register_flops(m.Linear) | |||
def flops_linear(module: m.Linear, inputs, outputs): | |||
bias = module.out_features if module.bias is not None else 0 | |||
return np.prod(outputs[0].shape) * module.in_features + bias | |||
@_register_modules(m.Linear, qatm.Linear, qm.Linear) | |||
def count_linear(module, input, output): | |||
return np.prod(output[0].shape) * module.in_features | |||
@register_flops(m.BatchMatMulActivation) | |||
def flops_batchmatmul(module: m.BatchMatMulActivation, inputs, outputs): | |||
bias = 1 if module.bias is not None else 0 | |||
x = inputs[0] | |||
w = module.weight | |||
batch_size = x.shape[0] | |||
n, p = x.shape[1:] | |||
_, m = w.shape[1:] | |||
return n * (p + bias) * m * batch_size | |||
# does not need import qat and quantized module since they inherit from float module. | |||
hook_modules = ( | |||
m.Conv2d, | |||
m.ConvTranspose2d, | |||
m.LocalConv2d, | |||
m.BatchNorm2d, | |||
m.conv._ConvNd, | |||
m.Linear, | |||
m.BatchMatMulActivation, | |||
) | |||
@@ -106,22 +145,63 @@ def sizeof_fmt(num, suffix="B"): | |||
return "{}{:.1f} {}{}".format(sign_str, num, "Yi", suffix) | |||
def print_flops_stats(flops, bar_length_max=20): | |||
flops_list = [i["flops_num"] for i in flops] | |||
max_flops_num = max(flops_list + [0]) | |||
# calc total flops and set flops_cum | |||
def preprocess_receptive_field(module, inputs, outputs): | |||
# TODO: support other dimensions | |||
pre_rf = ( | |||
max(getattr(i.owner, "_rf", (1, 1))[0] for i in inputs), | |||
max(getattr(i.owner, "_rf", (1, 1))[1] for i in inputs), | |||
) | |||
pre_stride = ( | |||
max(getattr(i.owner, "_stride", (1, 1))[0] for i in inputs), | |||
max(getattr(i.owner, "_stride", (1, 1))[1] for i in inputs), | |||
) | |||
return pre_rf, pre_stride | |||
def get_op_stats(module, inputs, outputs): | |||
rst = { | |||
"input_shapes": [i.shape for i in inputs], | |||
"output_shapes": [o.shape for o in outputs], | |||
} | |||
valid_flag = False | |||
for key, _dict, fallback in _iter_list: | |||
for _type in _dict: | |||
if isinstance(module, _type): | |||
value = _dict[_type](module, inputs, outputs) | |||
valid_flag = True | |||
break | |||
else: | |||
if fallback is not None: | |||
value = fallback(module, inputs, outputs) | |||
continue | |||
if isinstance(key, tuple): | |||
assert isinstance(value, tuple) | |||
for k, v in zip(key, value): | |||
rst[k] = v | |||
else: | |||
rst[key] = value | |||
if valid_flag: | |||
return rst | |||
else: | |||
return None | |||
return | |||
def print_op_stats(flops, bar_length_max=20): | |||
max_flops_num = max([i["flops_num"] for i in flops] + [0]) | |||
total_flops_num = 0 | |||
for d in flops: | |||
total_flops_num += int(d["flops_num"]) | |||
d["flops_cum"] = sizeof_fmt(total_flops_num, suffix="OPs") | |||
for i in flops: | |||
f = i["flops_num"] | |||
i["flops"] = sizeof_fmt(f, suffix="OPs") | |||
r = i["ratio"] = f / total_flops_num | |||
i["percentage"] = "{:.2f}%".format(r * 100) | |||
bar_length = int(f / max_flops_num * bar_length_max) | |||
i["bar"] = "#" * bar_length | |||
for d in flops: | |||
ratio = d["ratio"] = d["flops_num"] / total_flops_num | |||
d["percentage"] = "{:.2f}%".format(ratio * 100) | |||
bar_length = int(d["flops_num"] / max_flops_num * bar_length_max) | |||
d["bar"] = "#" * bar_length | |||
d["flops"] = sizeof_fmt(d["flops_num"], suffix="OPs") | |||
header = [ | |||
"name", | |||
@@ -133,10 +213,13 @@ def print_flops_stats(flops, bar_length_max=20): | |||
"percentage", | |||
"bar", | |||
] | |||
if _receptive_field_enabled: | |||
header.insert(4, "receptive_field") | |||
header.insert(5, "stride") | |||
total_flops_str = sizeof_fmt(total_flops_num, suffix="OPs") | |||
total_var_size = sum( | |||
sum(s[1] if len(s) > 1 else 0 for s in i["output_shapes"]) for i in flops | |||
sum(s[1] if len(s) > 1 else 0 for s in d["output_shapes"]) for d in flops | |||
) | |||
flops.append( | |||
dict(name="total", flops=total_flops_str, output_shapes=total_var_size) | |||
@@ -147,30 +230,44 @@ def print_flops_stats(flops, bar_length_max=20): | |||
return total_flops_num | |||
def print_params_stats(params, bar_length_max=20): | |||
def get_param_stats(param: np.ndarray): | |||
nbits = get_dtype_bit(param.dtype.name) | |||
shape = param.shape | |||
param_dim = np.prod(param.shape) | |||
param_size = param_dim * nbits // 8 | |||
return { | |||
"dtype": param.dtype, | |||
"shape": shape, | |||
"mean": "{:.3g}".format(param.mean()), | |||
"std": "{:.3g}".format(param.std()), | |||
"param_dim": param_dim, | |||
"nbits": nbits, | |||
"size": param_size, | |||
} | |||
def print_param_stats(params, bar_length_max=20): | |||
max_size = max([d["size"] for d in params] + [0]) | |||
total_param_dims, total_param_size = 0, 0 | |||
for d in params: | |||
total_param_dims += int(d["param_dim"]) | |||
total_param_size += int(d["size"]) | |||
d["size"] = sizeof_fmt(d["size"]) | |||
d["size_cum"] = sizeof_fmt(total_param_size) | |||
for d in params: | |||
ratio = d["param_dim"] / total_param_dims | |||
ratio = d["size"] / total_param_size | |||
d["ratio"] = ratio | |||
d["percentage"] = "{:.2f}%".format(ratio * 100) | |||
# construct bar | |||
max_ratio = max([d["ratio"] for d in params]) | |||
for d in params: | |||
bar_length = int(d["ratio"] / max_ratio * bar_length_max) | |||
bar_length = int(d["size"] / max_size * bar_length_max) | |||
d["size_bar"] = "#" * bar_length | |||
d["size"] = sizeof_fmt(d["size"]) | |||
param_size = sizeof_fmt(total_param_size) | |||
params.append(dict(name="total", param_dim=total_param_dims, size=param_size,)) | |||
header = [ | |||
"name", | |||
"dtype", | |||
"shape", | |||
"mean", | |||
"std", | |||
@@ -186,7 +283,13 @@ def print_params_stats(params, bar_length_max=20): | |||
"param stats: \n" + tabulate.tabulate(dict2table(params, header=header)) | |||
) | |||
return total_param_size | |||
return total_param_dims, total_param_size | |||
def print_summary(**kwargs): | |||
data = [["item", "value"]] | |||
data.extend(list(kwargs.items())) | |||
logger.info("summary\n" + tabulate.tabulate(data)) | |||
def module_stats( | |||
@@ -205,71 +308,53 @@ def module_stats( | |||
:param log_params: whether print and record params size. | |||
:param log_flops: whether print and record op flops. | |||
""" | |||
disable_receptive_field() | |||
def get_byteswidth(tensor): | |||
if dtype.is_quantize(tensor.dtype): | |||
return 1 | |||
# elif dtype.is_bfloat16(tensor.dtype): | |||
# return 2 | |||
else: | |||
return 4 | |||
def module_stats_hook(module, input, output, name=""): | |||
def module_stats_hook(module, inputs, outputs, name=""): | |||
class_name = str(module.__class__).split(".")[-1].split("'")[0] | |||
flops_fun = CALC_FLOPS.get(type(module)) | |||
if callable(flops_fun): | |||
flops_num = flops_fun(module, input, output) | |||
if not isinstance(output, (list, tuple)): | |||
output = [output] | |||
flops.append( | |||
dict( | |||
name=name, | |||
class_name=class_name, | |||
input_shapes=[i.shape for i in input], | |||
output_shapes=[o.shape for o in output], | |||
flops_num=flops_num, | |||
flops_cum=0, | |||
) | |||
) | |||
flops_stats = get_op_stats(module, inputs, outputs) | |||
if flops_stats is not None: | |||
flops_stats["name"] = name | |||
flops_stats["class_name"] = class_name | |||
flops.append(flops_stats) | |||
if hasattr(module, "weight") and module.weight is not None: | |||
w = module.weight | |||
value = w.numpy() | |||
param_dim = np.prod(w.shape) | |||
param_bytes = get_byteswidth(w) | |||
params.append( | |||
dict( | |||
name=name + "-w", | |||
shape=w.shape, | |||
param_dim=param_dim, | |||
bits=param_bytes * 8, | |||
size=param_dim * param_bytes, | |||
size_cum=0, | |||
mean="{:.2g}".format(value.mean()), | |||
std="{:.2g}".format(value.std()), | |||
) | |||
) | |||
param_stats = get_param_stats(w.numpy()) | |||
param_stats["name"] = name + "-w" | |||
params.append(param_stats) | |||
if hasattr(module, "bias") and module.bias is not None: | |||
b = module.bias | |||
value = b.numpy() | |||
param_dim = np.prod(b.shape) | |||
param_bytes = get_byteswidth(b) | |||
params.append( | |||
dict( | |||
name=name + "-b", | |||
shape=b.shape, | |||
param_dim=param_dim, | |||
bits=param_bytes * 8, | |||
size=param_dim * param_bytes, | |||
size_cum=0, | |||
mean="{:.2g}".format(value.mean()), | |||
std="{:.2g}".format(value.std()), | |||
) | |||
) | |||
param_stats = get_param_stats(b.numpy()) | |||
param_stats["name"] = name + "-b" | |||
params.append(param_stats) | |||
@contextlib.contextmanager | |||
def adjust_stats(module, training=False): | |||
"""Adjust module to training/eval mode temporarily. | |||
Args: | |||
module (M.Module): used module. | |||
training (bool): training mode. True for train mode, False fro eval mode. | |||
""" | |||
def recursive_backup_stats(module, mode): | |||
for m in module.modules(): | |||
# save prev status to _prev_training | |||
m._prev_training = m.training | |||
m.train(mode, recursive=False) | |||
def recursive_recover_stats(module): | |||
for m in module.modules(): | |||
# recover prev status and delete attribute | |||
m.training = m._prev_training | |||
delattr(m, "_prev_training") | |||
recursive_backup_stats(module, mode=training) | |||
yield module | |||
recursive_recover_stats(module) | |||
# multiple inputs to the network | |||
if not isinstance(input_size[0], tuple): | |||
@@ -286,15 +371,28 @@ def module_stats( | |||
) | |||
inputs = [zeros(in_size, dtype=np.float32) for in_size in input_size] | |||
model.eval() | |||
model(*inputs) | |||
with adjust_stats(model, training=False) as model: | |||
model(*inputs) | |||
for h in hooks: | |||
h.remove() | |||
total_flops, total_params = 0, 0 | |||
extra_info = { | |||
"#params": len(params), | |||
} | |||
total_flops, total_param_dims, total_param_size = 0, 0, 0 | |||
if log_params: | |||
total_params = print_params_stats(params, bar_length_max) | |||
total_param_dims, total_param_size = print_param_stats(params, bar_length_max) | |||
extra_info["total_param_dims"] = sizeof_fmt(total_param_dims) | |||
extra_info["total_param_size"] = sizeof_fmt(total_param_size) | |||
if log_flops: | |||
total_flops = print_flops_stats(flops, bar_length_max) | |||
total_flops = print_op_stats(flops, bar_length_max) | |||
extra_info["total_flops"] = sizeof_fmt(total_flops, suffix="OPs") | |||
if log_params and log_flops: | |||
extra_info["flops/param_size"] = "{:3.3f}".format( | |||
total_flops / total_param_size | |||
) | |||
print_summary(**extra_info) | |||
return total_params, total_flops | |||
return total_param_size, total_flops |
@@ -11,12 +11,14 @@ import fnmatch | |||
import itertools | |||
import re | |||
from collections import OrderedDict | |||
from typing import Dict, List | |||
from typing import Dict, List, Sequence | |||
import numpy as np | |||
from ..core._imperative_rt import ComputingGraph | |||
from ..core._imperative_rt.core2 import SymbolVar | |||
from ..core.tensor import megbrain_graph as G | |||
from ..logger import get_logger | |||
from .comp_graph_tools import get_dep_vars, get_opr_type, get_oprs_seq | |||
from .network_node import ( | |||
Host2DeviceCopy, | |||
@@ -27,6 +29,8 @@ from .network_node import ( | |||
str_to_mge_class, | |||
) | |||
logger = get_logger(__name__) | |||
class Network: | |||
def __init__(self): | |||
@@ -60,12 +64,12 @@ class Network: | |||
) | |||
outputs = [new_outputs[i] for i in outspec] | |||
self._orig_outputs = outputs | |||
self.add_dep_oprs(*outputs) | |||
for x in self._orig_outputs: | |||
self.output_vars.append(self._get_var(x)) | |||
self.add_dep_oprs() | |||
for x in self._orig_inputs: | |||
self.input_vars.append(self._get_var(x)) | |||
for x in self._orig_outputs: | |||
self.output_vars.append(self._get_var(x)) | |||
self.graph = self._orig_outputs[0].graph | |||
return self | |||
@@ -83,6 +87,58 @@ class Network: | |||
for o in opr.outputs: | |||
self.all_vars_map[o.var.id] = o | |||
def optimize_for_inference(self, dest_vars, **kwargs): | |||
r""" | |||
Applies optimize_for_inference pass for operator graph. | |||
:param dest_vars: list of output vars in the operator graph | |||
:Keyword Arguments: | |||
* enable_io16xc32 -- | |||
whether to use float16 for I/O between oprs and use | |||
float32 as internal computation precision. Note the output var would be | |||
changed to float16. | |||
* enable_ioc16 -- | |||
whether to use float16 for both I/O and computation | |||
precision. | |||
* enable_hwcd4 -- | |||
whether to use NHWCD4 data layout. This is faster on some | |||
OpenCL backend. | |||
* enable_nchw88 -- | |||
whether to use NCHW88 data layout, currently | |||
used in X86 AVX backend. | |||
* enable_nchw44 -- | |||
whether to use NCHW44 data layout, currently | |||
used in arm backend. | |||
* enable_nchw44_dot -- | |||
whether to use NCHW44_dot data layout, currently | |||
used in armv8.2+dotprod backend. | |||
* enable_nchw4 -- | |||
whether to use NCHW4 data layout, currently | |||
used in nvidia backend(based on cudnn). | |||
* enable_nchw32 -- | |||
whether to use NCHW32 data layout, currently | |||
used in nvidia backend with tensorcore(based on cudnn). | |||
* enable_chwn4 -- | |||
whether to use CHWN4 data layout, currently | |||
used in nvidia backend with tensorcore. | |||
* enable_fuse_conv_bias_nonlinearity: whether to fuse conv+bias+nonlinearty | |||
into one opr. | |||
* enable_fuse_conv_bias_with_z: whether to fuse conv_bias with z | |||
input for inference on nvidia backend(this optimization pass will | |||
result in mismatch of the precision of output of training and | |||
inference) | |||
""" | |||
if not isinstance(dest_vars, Sequence): | |||
dest_vars = [dest_vars] | |||
dest_vars = list(G.VarNode(var.var) for var in dest_vars) | |||
new_vars = G.optimize_for_inference(dest_vars, **kwargs) | |||
return list(self._get_var(var) for var in new_vars) | |||
def dump( | |||
self, | |||
file, | |||
@@ -122,47 +178,22 @@ class Network: | |||
:Keyword Arguments: | |||
* enable_io16xc32 -- | |||
whether to use float16 for I/O between oprs and use | |||
float32 as internal computation precision. Note the output var would be | |||
changed to float16. | |||
* enable_ioc16 -- | |||
whether to use float16 for both I/O and computation | |||
precision. | |||
* enable_hwcd4 -- | |||
whether to use NHWCD4 data layout. This is faster on some | |||
OpenCL backend. | |||
* enable_nchw88 -- | |||
whether to use NCHW88 data layout, currently | |||
used in X86 AVX backend. | |||
* enable_nchw44 -- | |||
whether to use NCHW44 data layout, currently | |||
used in arm backend. | |||
* enable_nchw44_dot -- | |||
whether to use NCHW44_dot data layout, currently | |||
used in armv8.2+dotprod backend. | |||
* enable_nchw4 -- | |||
whether to use NCHW4 data layout, currently | |||
used in nvidia backend(based on cudnn). | |||
* enable_nchw32 -- | |||
whether to use NCHW32 data layout, currently | |||
used in nvidia backend with tensorcore(based on cudnn). | |||
* enable_chwn4 -- | |||
whether to use CHWN4 data layout, currently | |||
used in nvidia backend with tensorcore. | |||
* enable_fuse_conv_bias_nonlinearity: whether to fuse conv+bias+nonlinearty | |||
into one opr. | |||
* enable_fuse_conv_bias_with_z: whether to fuse conv_bias with z | |||
input for inference on nvidia backend(this optimization pass will | |||
result in mismatch of the precision of output of training and | |||
inference) | |||
See also :py:meth:`optimize_for_inference`. | |||
""" | |||
self._compile() | |||
out = [G.VarNode(var.var) for var in self.output_vars] | |||
if kwargs.pop("arg_names", False): | |||
logger.warning( | |||
'"arg_names" is not supported in Network.dump, rename input vars directly' | |||
) | |||
if kwargs.pop("output_names", False): | |||
logger.warning( | |||
'"output_names" is not supported in Network.dump, rename output vars directly' | |||
) | |||
if optimize_for_inference: | |||
out = G.optimize_for_inference(out, **kwargs) | |||
@@ -197,6 +228,8 @@ class Network: | |||
def add_output(self, *vars: VarNode): | |||
"""Adds vars into the network output node list | |||
""" | |||
if not all([var.owner for var in vars]): | |||
self.add_dep_oprs(*vars) | |||
for var in vars: | |||
if var not in self.output_vars: | |||
self.output_vars.append(var) | |||
@@ -209,21 +242,25 @@ class Network: | |||
self.output_vars.remove(var) | |||
def add_dep_oprs(self, *vars): | |||
"""Adds dependent opnodes and varnodes of vars into network | |||
""" | |||
oprs = get_oprs_seq(vars, False, False) | |||
for mge_opr in oprs: | |||
if len(vars) == 0: | |||
vars = self.output_vars | |||
q = list(vars) | |||
while len(q) > 0: | |||
cur = q.pop(0) | |||
if cur.owner is not None: | |||
continue | |||
if cur.name is None: | |||
cur.name = cur.var.name | |||
self.all_vars_map[cur.var.id] = cur | |||
mge_opr = cur.var.owner | |||
if get_opr_type(mge_opr) == "Host2DeviceCopy": | |||
self._orig_inputs.extend(mge_opr.outputs) | |||
opr = self._add_opr(mge_opr) | |||
if opr is not None: | |||
for x in mge_opr.inputs: | |||
opr.add_inp_var(self._get_var(x)) | |||
# set out var | |||
for x in mge_opr.outputs: | |||
opr.add_out_var(self._get_var(x)) | |||
return [self.all_vars_map[var.id] for var in vars] | |||
cur.owner = self._add_opr(mge_opr) | |||
if cur.owner is None: | |||
cur.owner = self.all_oprs_map[mge_opr.id] | |||
continue | |||
q.extend(cur.owner.inputs) | |||
return list(vars) | |||
def modify_opr_names(self, modifier): | |||
"""Modifies names of operators **inplace**; useful for merging loaded | |||
@@ -275,6 +312,9 @@ class Network: | |||
Replaces vars in the graph. | |||
:param repl_dict: the map {old_var: new_var} that specifies how to replace the vars. | |||
""" | |||
if not all([var.owner for var in repl_dict.values()]): | |||
print(repl_dict.values()) | |||
self.add_dep_oprs(*list(repl_dict.values())) | |||
for var in self.all_vars: | |||
if var in repl_dict: | |||
repl_var = repl_dict[var] | |||
@@ -282,6 +322,7 @@ class Network: | |||
idx = owner.outputs.index(repl_var) | |||
owner.outputs[idx] = var | |||
var.__dict__.update(repl_var.__dict__) | |||
var.var = repl_var.var | |||
def replace_oprs(self, repl_dict: Dict[OpNode, OpNode]): | |||
""" | |||
@@ -297,6 +338,7 @@ class Network: | |||
for ind, var in enumerate(opr.outputs): | |||
var.owner = repl_dict[opr] | |||
var.__dict__.update(repl_dict[opr].outputs[ind].__dict__) | |||
var.var = repl_dict[opr].outputs[ind].var | |||
def get_opr_by_type(self, oprcls, unique=True): | |||
assert issubclass(oprcls, OpNode) | |||
@@ -381,11 +423,16 @@ class Network: | |||
return self.opr_filter.as_dict() | |||
# used for loading and building graph | |||
def _add_opr(self, x): | |||
def _add_opr(self, opr): | |||
# TODO: use megbrain C++ RTTI to replace type string | |||
if x.id not in self.all_oprs_map: | |||
self.all_oprs_map[x.id] = str_to_mge_class(get_opr_type(x)).load(x) | |||
return self.all_oprs_map[x.id] | |||
if opr.id not in self.all_oprs_map: | |||
opnode = str_to_mge_class(get_opr_type(opr)).load(opr) | |||
self.all_oprs_map[opr.id] = opnode | |||
for var in opr.inputs: | |||
opnode.add_inp_var(self._get_var(var)) | |||
for var in opr.outputs: | |||
opnode.add_out_var(self._get_var(var)) | |||
return opnode | |||
else: | |||
return None | |||
@@ -397,7 +444,7 @@ class Network: | |||
def _get_var(self, x): | |||
# auto convert to VarNode of Network | |||
if x.id not in self.all_vars_map: | |||
if x.id not in self.all_vars_map or self.all_vars_map[x.id].var != x: | |||
self.all_vars_map[x.id] = VarNode.load(x, self._get_opr(x.owner)) | |||
return self.all_vars_map[x.id] | |||
@@ -652,7 +699,7 @@ class NodeFilterHasInput(NodeFilter): | |||
assert isinstance( | |||
i, OpNode | |||
), "has_input() must be used with OpNode; " "got {!r}".format(i) | |||
if self.var in i.inputs: | |||
if any(self.var is _ for _ in i.inputs): | |||
yield i | |||
@@ -663,6 +710,7 @@ class NodeFilterName(NodeFilter): | |||
def __init__(self, node_iter, pattern, ignorecase): | |||
super().__init__(node_iter) | |||
self.pattern = pattern | |||
self._re = self.make_re(pattern, ignorecase) | |||
@classmethod | |||
@@ -676,5 +724,5 @@ class NodeFilterName(NodeFilter): | |||
def __iter__(self): | |||
for i in self._iter: | |||
if self._re.match(i.name): | |||
if self.pattern == i.name or self._re.match(i.name): | |||
yield i |
@@ -6,27 +6,41 @@ | |||
# Unless required by applicable law or agreed to in writing, | |||
# software distributed under the License is distributed on an | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
import abc | |||
import json | |||
import sys | |||
from typing import Callable | |||
from typing import Callable, Sequence | |||
import numpy as np | |||
from ..core import _imperative_rt as rt | |||
from ..core._imperative_rt.core2 import SymbolVar | |||
from ..core._wrap import Device | |||
from ..core.ops import builtin | |||
from ..core.tensor.megbrain_graph import InputNode | |||
from ..core.tensor.array_method import ArrayMethodMixin | |||
from ..core.tensor.indexing import getitem as _getitem | |||
from ..core.tensor.indexing import setitem as _setitem | |||
from ..core.tensor.megbrain_graph import InputNode, OutputNode | |||
from ..tensor import Tensor | |||
from .comp_graph_tools import replace_vars | |||
from .module_stats import ( | |||
preprocess_receptive_field, | |||
register_flops, | |||
register_receptive_field, | |||
) | |||
class NetworkNode: | |||
pass | |||
class VarNode(NetworkNode): | |||
def __init__(self, owner_opr=None, name=None): | |||
self.var = None | |||
class VarNodeMeta(type(SymbolVar), type(ArrayMethodMixin)): | |||
pass | |||
class VarNode(NetworkNode, SymbolVar, ArrayMethodMixin, metaclass=VarNodeMeta): | |||
def __init__(self, var=None, *, owner_opr=None, name=None): | |||
SymbolVar.__init__(self, var) | |||
self.owner = owner_opr | |||
self.name = name | |||
self.id = id(self) | |||
@@ -53,6 +67,40 @@ class VarNode(NetworkNode): | |||
def dtype(self): | |||
return self.var.dtype if self.var else None | |||
def __bool__(self): | |||
return False | |||
__index__ = None | |||
__int__ = None | |||
__float__ = None | |||
__complex__ = None | |||
def __hash__(self): | |||
return id(self) | |||
@property | |||
def _tuple_shape(self): | |||
return self.var.shape | |||
def numpy(self): | |||
o = OutputNode(self.var) | |||
self.graph.compile(o.outputs).execute() | |||
return o.get_value().numpy() | |||
def __getitem__(self, index): | |||
return _getitem(self, index) | |||
def __setitem__(self, index, value): | |||
if index is not Ellipsis: | |||
value = _setitem(self, index, value) | |||
if self.owner is not None: | |||
idx = self.owner.outputs.index(self) | |||
self.owner.outputs[idx] = VarNode( | |||
self.var, owner_opr=self.owner, name=self.var.name | |||
) | |||
self.var = value.var | |||
self.owner = None | |||
def set_owner_opr(self, owner_opr): | |||
self.owner = owner_opr | |||
@@ -130,7 +178,7 @@ class Host2DeviceCopy(OpNode): | |||
outputs = rt.make_h2d(graph, self.device, self.dtype, self.shape, self.name) | |||
self._opr = outputs.owner | |||
if len(self.outputs) == 0: | |||
self.outputs.append(VarNode(self, self.name)) | |||
self.outputs.append(VarNode(owner_opr=self, name=self.name)) | |||
self.outputs[0].var = outputs | |||
assert self.outputs[0].owner is self | |||
@@ -168,8 +216,8 @@ class ImmutableTensor(OpNode): | |||
def set_value(self, data, device=None): | |||
assert self.graph is not None | |||
cn = device if device else self.device | |||
assert isinstance(data, (int, float, np.ndarray)) | |||
if isinstance(data, (int, float)): | |||
assert isinstance(data, (int, float, Sequence, np.ndarray)) | |||
if not isinstance(data, np.ndarray): | |||
data = np.array(data) | |||
if data.dtype == np.float64: | |||
data = data.astype(np.float32) | |||
@@ -177,7 +225,7 @@ class ImmutableTensor(OpNode): | |||
data = data.astype(np.int32) | |||
varnode = rt.make_const(self.graph, data, cn, data.dtype, self.name) | |||
if len(self.outputs) == 0: | |||
self.outputs.append(VarNode(self, self.name)) | |||
self.outputs.append(VarNode(owner_opr=self, name=self.name)) | |||
self.outputs[0].var = varnode | |||
self._opr = varnode.owner | |||
@@ -225,8 +273,21 @@ class Elemwise(OpNode): | |||
type = "Elemwise" | |||
opdef = builtin.Elemwise | |||
def calc_flops(self): | |||
return np.prod(self.outputs[0].shape) | |||
class ElemwiseMultiType(OpNode): | |||
type = "ElemwiseMultiType" | |||
opdef = builtin.ElemwiseMultiType | |||
@classmethod | |||
def load(cls, opr): | |||
obj = super(ElemwiseMultiType, cls).load(opr) | |||
obj.params["dtype"] = opr.outputs[0].dtype | |||
return obj | |||
@register_flops(Elemwise, ElemwiseMultiType) | |||
def flops_elemwise(opnode: Elemwise, inputs, outputs): | |||
return np.prod(outputs[0].shape) | |||
class Reduce(OpNode): | |||
@@ -255,20 +316,24 @@ class MatrixMul(OpNode): | |||
type = "MatrixMul" | |||
opdef = builtin.MatrixMul | |||
def calc_flops(self): | |||
assert len(self.inputs[0].shape) == 2 and len(self.outputs[0].shape) == 2 | |||
mid_shape = self.inputs[0].shape[1] | |||
return np.prod(self.outputs[0].shape) * mid_shape | |||
@register_flops(MatrixMul) | |||
def flops_matmul(opnode: MatrixMul, inputs, outputs): | |||
assert len(inputs[0].shape) == 2 and len(outputs[0].shape) == 2 | |||
mid_shape = inputs[0].shape[1] | |||
return np.prod(outputs[0].shape) * mid_shape | |||
class BatchedMatrixMul(OpNode): | |||
type = "BatchedMatmul" | |||
opdef = builtin.BatchedMatrixMul | |||
def calc_flops(self): | |||
assert len(self.inputs[0].shape) == 3 and len(self.outputs[0].shape) == 3 | |||
mid_shape = self.inputs[0].shape[2] | |||
return np.prod(self.outputs[0].shape) * mid_shape | |||
@register_flops(BatchedMatrixMul) | |||
def flops_batchmatmul(opnode: BatchedMatrixMul, inputs, outputs): | |||
assert len(inputs[0].shape) == 3 and len(outputs[0].shape) == 3 | |||
mid_shape = inputs[0].shape[2] | |||
return np.prod(outputs[0].shape) * mid_shape | |||
class Dot(OpNode): | |||
@@ -285,18 +350,6 @@ class ConvolutionForward(OpNode): | |||
type = "Convolution" | |||
opdef = builtin.Convolution | |||
def calc_flops(self): | |||
param_W_shape = self.inputs[1].shape | |||
kh = param_W_shape[-2] | |||
kw = param_W_shape[-1] | |||
if len(param_W_shape) == 5: | |||
num_input = param_W_shape[2] | |||
else: | |||
num_input = param_W_shape[1] | |||
NCHW = np.prod(self.outputs[0].shape) | |||
# N x Cout x H x W x (Cin x Kw x Kh) | |||
return NCHW * (num_input * kw * kh) | |||
class ConvolutionBackwardData(OpNode): | |||
type = "ConvTranspose" | |||
@@ -343,17 +396,41 @@ class ConvBiasForward(OpNode): | |||
obj.params["dtype"] = opr.outputs[0].dtype | |||
return obj | |||
def calc_flops(self): | |||
param_W_shape = self.inputs[1].shape | |||
kh = param_W_shape[-2] | |||
kw = param_W_shape[-1] | |||
if len(param_W_shape) == 5: | |||
num_input = param_W_shape[2] | |||
else: | |||
num_input = param_W_shape[1] | |||
NCHW = np.prod(self.outputs[0].shape) | |||
# N x Cout x H x W x (Cin x Kw x Kh + bias) | |||
return NCHW * (num_input * kw * kh + 1) | |||
@register_flops( | |||
ConvolutionForward, ConvBiasForward, | |||
) | |||
def flops_conv(opnode: ConvolutionForward, inputs, outputs): | |||
param_W_shape = inputs[1].shape | |||
kh = param_W_shape[-2] | |||
kw = param_W_shape[-1] | |||
if len(param_W_shape) == 5: | |||
num_input = param_W_shape[2] | |||
else: | |||
num_input = param_W_shape[1] | |||
NCHW = np.prod(outputs[0].shape) | |||
bias = 1 if isinstance(opnode, ConvBiasForward) else 0 | |||
# N x Cout x H x W x (Cin x Kw x Kh) | |||
return NCHW * (num_input * kw * kh + bias) | |||
@register_receptive_field(ConvolutionForward, ConvBiasForward) | |||
def receptive_field(opnode: ConvolutionForward, inputs, outputs): | |||
pre_rf, pre_stride = preprocess_receptive_field(opnode, inputs, outputs) | |||
param_W_shape = inputs[1].shape | |||
kh = param_W_shape[-2] | |||
kw = param_W_shape[-1] | |||
rf = ( | |||
kh * pre_stride[0] + pre_rf[0] - pre_stride[0], | |||
kw * pre_stride[1] + pre_rf[1] - pre_stride[1], | |||
) | |||
stride = ( | |||
opnode.params["stride_h"] * pre_stride[0], | |||
opnode.params["stride_w"] * pre_stride[1], | |||
) | |||
opnode._rf = rf | |||
opnode._stride = stride | |||
return rf, stride | |||
class BatchConvBiasForward(OpNode): | |||
@@ -652,20 +729,6 @@ class AssertEqual(OpNode): | |||
opdef = builtin.AssertEqual | |||
class ElemwiseMultiType(OpNode): | |||
type = "ElemwiseMultiType" | |||
opdef = builtin.ElemwiseMultiType | |||
@classmethod | |||
def load(cls, opr): | |||
obj = super(ElemwiseMultiType, cls).load(opr) | |||
obj.params["dtype"] = opr.outputs[0].dtype | |||
return obj | |||
def calc_flops(self): | |||
return np.prod(self.outputs[0].shape) | |||
class CvtColorForward(OpNode): | |||
type = "CvtColor" | |||
opdef = builtin.CvtColor |
@@ -266,7 +266,7 @@ void init_graph_rt(py::module m) { | |||
{"HEURISTIC", [&]() { stg = _AlgoStrategy::HEURISTIC; }}, | |||
{"PROFILE", [&]() { stg = _AlgoStrategy::PROFILE; }}, | |||
{"REPRODUCIBLE", [&]() { stg = _AlgoStrategy::REPRODUCIBLE; }}, | |||
{"OPTMIZED", [&]() { stg = _AlgoStrategy::OPTMIZED; }}, | |||
{"OPTIMIZED", [&]() { stg = _AlgoStrategy::OPTIMIZED; }}, | |||
}; | |||
auto it = m.find(strategy); | |||
mgb_assert(it != m.end(), "Invalid strategy string!"); | |||
@@ -87,9 +87,13 @@ struct pyobj_convert_generic { | |||
} | |||
}; | |||
template<typename T, typename SFINAE=void> | |||
struct EnumTrait; | |||
template <typename T> | |||
struct EnumTrait { | |||
struct EnumTrait<T, std::enable_if_t<std::is_enum_v<T>>> { | |||
static constexpr bool is_bit_combined = false; | |||
static constexpr std::underlying_type_t<T> max = 0; | |||
}; | |||
template <typename T> | |||
@@ -264,18 +268,25 @@ struct BitCombinedEnumWrapper { | |||
return ret; | |||
} | |||
} | |||
static PyObject* py_new_combined_enum(PyTypeObject* type, PyObject*, PyObject*) { | |||
PyObject* obj = type->tp_alloc(type, 0); | |||
reinterpret_cast<BitCombinedEnumWrapper*>(obj)->value = static_cast<T>(1); | |||
return obj; | |||
} | |||
static int py_init(PyObject* self, PyObject* args, PyObject*) { | |||
int input = 1; | |||
if (PyArg_ParseTuple(args, "|i", &input)){ | |||
reinterpret_cast<BitCombinedEnumWrapper*>(self)->value = | |||
static_cast<T>(input); | |||
static PyObject* py_new_combined_enum(PyTypeObject* type, PyObject* args, PyObject*) { | |||
if (!PyTuple_Size(args)) { | |||
PyObject* obj = type->tp_alloc(type, 0); | |||
reinterpret_cast<BitCombinedEnumWrapper*>(obj)->value = T(); | |||
return obj; | |||
} | |||
else { | |||
PyObject* input; | |||
if (!PyArg_ParseTuple(args, "|O", &input)) { | |||
return nullptr; | |||
} | |||
T value; | |||
try { | |||
value = pyobj_convert_generic<T>::from(input); | |||
} CATCH_ALL(nullptr); | |||
PyObject* obj = type->tp_alloc(type, 0); | |||
reinterpret_cast<BitCombinedEnumWrapper*>(obj)->value = value; | |||
return obj; | |||
} | |||
return 0; | |||
} | |||
static PyObject* py_repr(PyObject* self) { | |||
return pyobj_convert_generic<std::string>::to( | |||
@@ -325,6 +336,12 @@ struct pyobj_convert_generic<T, | |||
static T from(PyObject* obj) { | |||
if (PyObject_TypeCheck(obj, &Wrapper::type)) { | |||
return reinterpret_cast<Wrapper*>(obj)->value; | |||
} else if(PyLong_Check(obj)) { | |||
auto value = pyobj_convert_generic<std::underlying_type_t<T>>::from(obj); | |||
mgb_throw_if(value > EnumTrait<T>::max, mgb::MegBrainError, | |||
"out of range, cannot convert %zu to %s", | |||
static_cast<uint32_t>(value), Wrapper::name); | |||
return static_cast<T>(value); | |||
} | |||
// try as string | |||
// TODO: type checkcd | |||
@@ -160,16 +160,21 @@ PyObject* py_apply(PyObject* self, PyObject*const* args, size_t nargs/* , PyObje | |||
if (ctx.op->same_type<BackwardGraph>()) { | |||
ctx.backward = true; | |||
} | |||
if (py::isinstance<cg::VarNode>(py::handle(args[0]))){ | |||
SmallVector<cg::VarNode*> vinputs(nargs); | |||
for (size_t i = 0; i < nargs; ++i) { | |||
vinputs[i] = py::handle(args[i]).cast<cg::VarNode *>(); | |||
} | |||
auto op = ctx.op.get(); | |||
return to_tuple(OpDef::apply_on_var_node(*op, vinputs)).release().ptr(); | |||
} | |||
if (py::isinstance<PySymbolVar>(py::handle(args[0]))){ | |||
SmallVector<cg::VarNode*> vinputs(nargs); | |||
for (size_t i = 0; i < nargs; ++i) { | |||
vinputs[i] = py::handle(args[i]).cast<PySymbolVar*>()->m_node; | |||
} | |||
auto op = ctx.op.get(); | |||
auto rst = OpDef::apply_on_var_node(*op, vinputs); | |||
auto ret = pybind11::tuple(rst.size()); | |||
auto typeobj = py::handle(args[0]).get_type(); | |||
for (size_t i = 0; i<rst.size(); ++i) { | |||
ret[i] = typeobj(pybind11::cast(rst[i], pybind11::return_value_policy::automatic)); | |||
} | |||
return ret.release().ptr(); | |||
} | |||
for (size_t i = 0; i < nargs; ++i) { | |||
if (TensorWrapper* tw = TensorWrapper::try_cast(args[i])) { | |||
@@ -686,9 +691,9 @@ PyArray_Descr* _dtype_promotion(PyObject*const* args, size_t nargs) { | |||
continue; | |||
} | |||
if (py::isinstance<cg::VarNode>(py::handle(handle))){ | |||
auto var = py::handle(handle).cast<cg::VarNode *>(); | |||
mgb::DType type = var->dtype(); | |||
if (py::isinstance<PySymbolVar>(py::handle(handle))){ | |||
auto var = py::handle(handle).cast<PySymbolVar*>(); | |||
mgb::DType type = var->m_node->dtype(); | |||
auto && descr = npy::dtype_mgb2np_descr(type); | |||
Py_INCREF(descr.get()); | |||
tensors.emplace_back(descr.get()); | |||
@@ -737,19 +742,26 @@ CompNode _get_device(PyObject*const* args, size_t nargs) { | |||
bool valid = false; | |||
CompNode cn; | |||
for (size_t i = 0; i < nargs; ++i) { | |||
PyObject* handle = is_tuple ? PyTuple_GetItem(tuple, i): args[i]; | |||
PyObject* handle = is_tuple ? PyTuple_GetItem(tuple, i) : args[i]; | |||
TensorWrapper* tw = TensorWrapper::try_cast(handle); | |||
bool is_var = py::isinstance<cg::VarNode>(py::handle(handle)); | |||
if (tw || is_var) { | |||
bool is_symvar = py::isinstance<PySymbolVar>(py::handle(handle)); | |||
if (tw || is_symvar) { | |||
if (!valid) { | |||
cn = tw ? tw->m_tensor->comp_node() : py::handle(handle).cast<cg::VarNode *>()->comp_node(); | |||
cn = tw ? tw->m_tensor->comp_node() | |||
: py::handle(handle) | |||
.cast<PySymbolVar*>() | |||
->m_node->comp_node(); | |||
valid = true; | |||
} else { | |||
CompNode cn1 = tw ? tw->m_tensor->comp_node() : py::handle(handle).cast<cg::VarNode *>()->comp_node(); | |||
CompNode cn1 = tw ? tw->m_tensor->comp_node() | |||
: py::handle(handle) | |||
.cast<PySymbolVar*>() | |||
->m_node->comp_node(); | |||
if (cn1 != cn) { | |||
throw py::value_error(ssprintf("ambiguous device: %s vs %s", | |||
cn.to_string().c_str(), cn1.to_string().c_str())); | |||
cn.to_string().c_str(), | |||
cn1.to_string().c_str())); | |||
} | |||
} | |||
} | |||
@@ -849,6 +861,32 @@ void init_tensor(py::module m) { | |||
.def("__call__", &TensorWeakRef::operator()) | |||
.def("_use_cnt", &TensorWeakRef::_use_cnt); | |||
py::class_<PySymbolVar, std::shared_ptr<PySymbolVar>>(m, "SymbolVar") | |||
.def_property_readonly( | |||
"dtype", [](PySymbolVar* v) { return v->m_node->dtype(); }) | |||
.def_property("var", [](PySymbolVar* v) { return v->m_node; }, | |||
[](PySymbolVar* s, cg::VarNode* v) { s->m_node = v; }) | |||
.def_property_readonly( | |||
"device", | |||
[](PySymbolVar* v) { return v->m_node->comp_node(); }) | |||
.def_property_readonly( | |||
"graph", | |||
[](PySymbolVar* v) { return v->m_node->owner_graph(); }) | |||
.def_property_readonly( | |||
"shape", | |||
[](PySymbolVar* v) -> const TensorShape* { | |||
auto&& mgr = v->m_node->owner_graph() | |||
->static_infer_manager(); | |||
return mgr.infer_shape_fallible(v->m_node); | |||
}) | |||
.def("_isscalar", [](PySymbolVar* v) { return v->is_scalar; }) | |||
.def("_setscalar", | |||
[](PySymbolVar* v) { return v->is_scalar = true; }) | |||
.def(py::init([](cg::VarNode* node) { | |||
return std::make_shared<PySymbolVar>(node); | |||
}), | |||
py::arg() = nullptr); | |||
static PyMethodDef method_defs[] = { | |||
MGE_PY_INTERFACE(apply, py_apply), | |||
MGE_PY_INTERFACE(dtype_promotion, dtype_promotion), | |||
@@ -181,6 +181,12 @@ struct TensorWrapper { | |||
PyObject* _use_cnt() { return PyLong_FromSize_t(m_tensor.use_count()); }; | |||
}; | |||
struct PySymbolVar { | |||
cg::VarNode* m_node = nullptr; | |||
bool is_scalar = false; | |||
PySymbolVar() = default; | |||
PySymbolVar(VarNode *m): m_node(m){} | |||
}; | |||
PyObject* py_apply(PyObject* self, PyObject*const* args, size_t nargs/* , PyObject* kwnames */); | |||
@@ -2,9 +2,11 @@ import io | |||
import numpy as np | |||
import megengine.core.tensor.megbrain_graph as G | |||
import megengine.utils.comp_graph_tools as cgtools | |||
from megengine import tensor | |||
from megengine.jit import trace | |||
from megengine.utils.network_node import VarNode | |||
def _default_compare_fn(x, y): | |||
@@ -14,8 +16,23 @@ def _default_compare_fn(x, y): | |||
np.testing.assert_allclose(x.numpy(), y, rtol=1e-6) | |||
def make_tensor(x, network=None, device=None): | |||
if network is not None: | |||
if isinstance(x, VarNode): | |||
return VarNode(x.var) | |||
return network.make_const(x, device=device) | |||
else: | |||
return tensor(x, device=device) | |||
def opr_test( | |||
cases, func, compare_fn=_default_compare_fn, ref_fn=None, test_trace=True, **kwargs | |||
cases, | |||
func, | |||
compare_fn=_default_compare_fn, | |||
ref_fn=None, | |||
test_trace=True, | |||
network=None, | |||
**kwargs | |||
): | |||
""" | |||
:param cases: the list which have dict element, the list length should be 2 for dynamic shape test. | |||
@@ -44,7 +61,7 @@ def opr_test( | |||
if not isinstance(results, (tuple, list)): | |||
results = (results,) | |||
for r, e in zip(results, expected): | |||
if not isinstance(r, tensor): | |||
if not isinstance(r, (tensor, VarNode)): | |||
r = tensor(r) | |||
compare_fn(r, e) | |||
@@ -72,9 +89,9 @@ def opr_test( | |||
raise ValueError("the input func should be callable") | |||
inp, outp = get_param(cases, 0) | |||
inp_tensor = [tensor(inpi) for inpi in inp] | |||
inp_tensor = [make_tensor(inpi, network) for inpi in inp] | |||
if test_trace: | |||
if test_trace and not network: | |||
copied_inp = inp_tensor.copy() | |||
for symbolic in [False, True]: | |||
traced_func = trace(symbolic=symbolic)(func) | |||
@@ -104,6 +104,10 @@ def _test_optimizer(opt_str, test_case, check_class, update_lr=False): | |||
) | |||
step += 1 | |||
check_func(ori_params, net.parameters(), step) | |||
try_state_dict = { | |||
"net": net.state_dict(), | |||
"opt": opt.state_dict(), | |||
} | |||
def test_sgd(): | |||
@@ -10,12 +10,17 @@ import collections | |||
import numpy as np | |||
import pytest | |||
from utils import make_tensor | |||
import megengine | |||
import megengine.core.tensor.megbrain_graph as G | |||
import megengine.functional as F | |||
from megengine.core._imperative_rt.core2 import apply | |||
from megengine.core._trace_option import use_symbolic_shape | |||
from megengine.core.ops import builtin | |||
from megengine.tensor import Tensor | |||
from megengine.utils.network import Network | |||
from megengine.utils.network_node import VarNode | |||
def cvt_to_shape_desc(val, inpvar, config=None): | |||
@@ -387,108 +392,130 @@ def test_batched_mesh_indexing(): | |||
# high level | |||
def get_value(x): | |||
if isinstance(x, VarNode): | |||
var = x.var | |||
o = G.OutputNode(var) | |||
graph = x.graph | |||
graph.compile(o.outputs).execute() | |||
return o.get_value().numpy() | |||
else: | |||
return x.numpy() | |||
@pytest.mark.parametrize("test_varnode", [True, False]) | |||
def test_advance_indexing_high_level(test_varnode): | |||
if test_varnode: | |||
network = Network() | |||
else: | |||
network = None | |||
def test_advance_indexing_high_level(): | |||
x = np.arange(25).reshape(5, 5).astype("int32") | |||
d = np.arange(15).reshape(3, 5).astype("int32") | |||
xx = Tensor(x) | |||
xx = make_tensor(x, network) | |||
np.testing.assert_equal(x[1, :], xx[1, :].numpy()) | |||
np.testing.assert_equal(x[:, 1], xx[:, 1].numpy()) | |||
np.testing.assert_equal(x[1:3, :], xx[1:3, :].numpy()) | |||
np.testing.assert_equal(x[1, :], get_value(xx[1, :])) | |||
np.testing.assert_equal(x[:, 1], get_value(xx[:, 1])) | |||
np.testing.assert_equal(x[1:3, :], get_value(xx[1:3, :])) | |||
np.testing.assert_equal(x[:, :], xx[:, :].numpy()) | |||
np.testing.assert_equal(x[1, 1], xx[1, 1].numpy()) | |||
np.testing.assert_equal(x[:, :], get_value(xx[:, :])) | |||
np.testing.assert_equal(x[1, 1], get_value(xx[1, 1])) | |||
yy = xx[(0, 4, 2), :] | |||
np.testing.assert_equal(x[(0, 4, 2), :], yy.numpy()) | |||
np.testing.assert_equal(x[(0, 4, 2), :], get_value(yy)) | |||
x_ = x.copy() | |||
x_[(0, 4, 2), :] = d | |||
xx_ = Tensor(xx) | |||
xx_ = make_tensor(xx, network) | |||
xx_[(0, 4, 2), :] = d | |||
np.testing.assert_equal(x_, xx_.numpy()) | |||
np.testing.assert_equal(x_, get_value(xx_)) | |||
x = np.arange(27).reshape(3, 3, 3).astype("int32") | |||
xx = Tensor(x) | |||
xx = make_tensor(x, network) | |||
np.testing.assert_equal(x[1, :, :], xx[1, :, :].numpy()) | |||
np.testing.assert_equal(x[1, :, 1], xx[1, :, 1].numpy()) | |||
np.testing.assert_equal(x[1, 0:1, :], xx[1, 0:1, :].numpy()) | |||
np.testing.assert_equal(x[0:1, 1, 1], xx[0:1, 1, 1].numpy()) | |||
np.testing.assert_equal(x[:, 1, 1], xx[:, 1, 1].numpy()) | |||
np.testing.assert_equal(x[:, 1], xx[:, 1].numpy()) | |||
np.testing.assert_equal(x[1, 1:2], xx[1, 1:2].numpy()) | |||
np.testing.assert_equal(x[1, :, :], get_value(xx[1, :, :])) | |||
np.testing.assert_equal(x[1, :, 1], get_value(xx[1, :, 1])) | |||
np.testing.assert_equal(x[1, 0:1, :], get_value(xx[1, 0:1, :])) | |||
np.testing.assert_equal(x[0:1, 1, 1], get_value(xx[0:1, 1, 1])) | |||
np.testing.assert_equal(x[:, 1, 1], get_value(xx[:, 1, 1])) | |||
np.testing.assert_equal(x[:, 1], get_value(xx[:, 1])) | |||
np.testing.assert_equal(x[1, 1:2], get_value(xx[1, 1:2])) | |||
x_ = x.copy() | |||
x_[1, 1, 1] = -1 | |||
xx[1, 1, 1] = -1 | |||
np.testing.assert_equal(x_, xx.numpy()) | |||
np.testing.assert_equal(x_, get_value(xx)) | |||
x_[:, 1, 1] = -2 | |||
xx[:, 1, 1] = x_[:, 1, 1] | |||
np.testing.assert_equal(x_, xx.numpy()) | |||
np.testing.assert_equal(x_, get_value(xx)) | |||
x_[0:1, :, 1] = -3 | |||
xx[0:1, :, 1] = x_[0:1, :, 1] | |||
np.testing.assert_equal(x_, xx.numpy()) | |||
np.testing.assert_equal(x_, get_value(xx)) | |||
x_[0:1, :, 1] = -4 | |||
y = Tensor(x_) | |||
y = make_tensor(x_, network) | |||
xx[0:1, :, 1] = y[0:1, :, 1] | |||
np.testing.assert_equal(y.numpy(), xx.numpy()) | |||
np.testing.assert_equal(get_value(y), get_value(xx)) | |||
x[:] = 1 | |||
xx[:] = 1 | |||
np.testing.assert_equal(x, xx.numpy()) | |||
np.testing.assert_equal(x, get_value(xx)) | |||
x = np.arange(9).reshape(3, 3).astype("int32") | |||
xx = Tensor(x) | |||
xx = make_tensor(x, network) | |||
y = np.array([1, 2]) | |||
yy = Tensor(y) | |||
np.testing.assert_equal(x[:, y[0]], xx[:, y[0]].numpy()) | |||
np.testing.assert_equal(x[:, y[0]], xx[:, yy[0]].numpy()) | |||
np.testing.assert_equal(x[:, y], xx[:, y].numpy()) | |||
np.testing.assert_equal(x[:, y], xx[:, yy].numpy()) | |||
yy = make_tensor(y, network) | |||
np.testing.assert_equal(x[:, y[0]], get_value(xx[:, y[0]])) | |||
np.testing.assert_equal(x[:, y[0]], get_value(xx[:, yy[0]])) | |||
np.testing.assert_equal(x[:, y], get_value(xx[:, y])) | |||
np.testing.assert_equal(x[:, y], get_value(xx[:, yy])) | |||
x_ = x.copy() | |||
x_[:, y[0]] = -1 | |||
xx_ = Tensor(x_) | |||
xx_ = make_tensor(x_, network) | |||
xx[:, yy[0]] = xx_[:, yy[0]] | |||
np.testing.assert_equal(x_, xx.numpy()) | |||
np.testing.assert_equal(x_, get_value(xx)) | |||
x_[:, y] = -1 | |||
xx_ = Tensor(x_) | |||
xx_ = make_tensor(x_, network) | |||
xx[:, yy] = xx_[:, yy] | |||
np.testing.assert_equal(x_, xx.numpy()) | |||
np.testing.assert_equal(x_, get_value(xx)) | |||
x = np.arange(9).reshape(3, 3).astype("int32") | |||
xx = Tensor(x) | |||
xx = make_tensor(x, network) | |||
y = np.array([1]) | |||
yy = Tensor(y) | |||
np.testing.assert_equal(x[:, y[0]], xx[:, y[0]].numpy()) | |||
np.testing.assert_equal(x[:, y[0]], xx[:, yy[0]].numpy()) | |||
np.testing.assert_equal(x[:, y], xx[:, y].numpy()) | |||
yy = make_tensor(y, network) | |||
np.testing.assert_equal(x[:, y[0]], get_value(xx[:, y[0]])) | |||
np.testing.assert_equal(x[:, y[0]], get_value(xx[:, yy[0]])) | |||
np.testing.assert_equal(x[:, y], get_value(xx[:, y])) | |||
np.testing.assert_equal(x[:, y], xx[:, yy].numpy()) | |||
np.testing.assert_equal(x[:, y], get_value(xx[:, yy])) | |||
x = np.arange(9).reshape(3, 3).astype("int32") | |||
xx = Tensor(x) | |||
np.testing.assert_equal(x[[0, 1], 0], xx[[0, 1], 0].numpy()) | |||
np.testing.assert_equal(x[0:2, 0], xx[0:2, 0].numpy()) | |||
def test_advance_indexing_with_bool(): | |||
xx = make_tensor(x, network) | |||
np.testing.assert_equal(x[[0, 1], 0], get_value(xx[[0, 1], 0])) | |||
np.testing.assert_equal(x[0:2, 0], get_value(xx[0:2, 0])) | |||
@pytest.mark.parametrize( | |||
"test_varnode", [True, False], | |||
) | |||
def test_advance_indexing_with_bool(test_varnode): | |||
if test_varnode: | |||
network = Network() | |||
else: | |||
network = None | |||
a = np.arange(9).reshape(3, 3).astype(np.float32) | |||
b = np.array([1, 2, 3]) | |||
c = np.array([1, 2, 3]) | |||
aa = Tensor(a) | |||
bb = Tensor(b) | |||
cc = Tensor(c) | |||
np.testing.assert_equal(a[b == 1, c == 2], aa[bb == 1, cc == 2].numpy()) | |||
aa = make_tensor(a, network) | |||
bb = make_tensor(b, network) | |||
cc = make_tensor(c, network) | |||
np.testing.assert_equal(a[b == 1, c == 2], get_value(aa[bb == 1, cc == 2])) | |||
a[b == 1, c == 2] = -1.0 | |||
aa[bb == 1, cc == 2] = -1.0 | |||
np.testing.assert_equal(a, aa.numpy()) | |||
np.testing.assert_equal(a, get_value(aa)) | |||
a = np.arange(9).reshape(3, 3).astype(np.float32) | |||
b = np.array([False, True, True]) | |||
@@ -11,13 +11,16 @@ import platform | |||
import numpy as np | |||
import pytest | |||
from utils import opr_test | |||
from utils import make_tensor, opr_test | |||
import megengine.functional as F | |||
from megengine import tensor | |||
from megengine.core._trace_option import use_symbolic_shape | |||
from megengine.core.tensor import megbrain_graph as G | |||
from megengine.core.tensor.utils import astensor1d | |||
from megengine.distributed.helper import get_device_count_by_fork | |||
from megengine.utils.network import Network | |||
from megengine.utils.network_node import VarNode | |||
def test_eye(): | |||
@@ -38,7 +41,13 @@ def test_eye(): | |||
) | |||
def test_concat(): | |||
@pytest.mark.parametrize("is_varnode", [True, False]) | |||
def test_concat(is_varnode): | |||
if is_varnode: | |||
network = Network() | |||
else: | |||
network = None | |||
def get_data_shape(length: int): | |||
return (length, 2, 3) | |||
@@ -50,18 +59,30 @@ def test_concat(): | |||
return F.concat([data1, data2]) | |||
cases = [{"input": [data1, data2]}, {"input": [data1, data3]}] | |||
opr_test(cases, run, ref_fn=lambda x, y: np.concatenate([x, y])) | |||
opr_test(cases, run, ref_fn=lambda x, y: np.concatenate([x, y]), network=network) | |||
def test_concat_device(): | |||
data1 = tensor(np.random.random((3, 2, 2)).astype("float32"), device="cpu0") | |||
data2 = tensor(np.random.random((2, 2, 2)).astype("float32"), device="cpu1") | |||
@pytest.mark.parametrize("is_varnode", [True, False]) | |||
def test_concat_device(is_varnode): | |||
if is_varnode: | |||
network = Network() | |||
else: | |||
network = None | |||
data1 = make_tensor(np.random.random((3, 2, 2)).astype("float32"), network, "cpu0") | |||
data2 = make_tensor(np.random.random((2, 2, 2)).astype("float32"), network, "cpu1") | |||
out = F.concat([data1, data2], device="cpu0") | |||
assert str(out.device).split(":")[0] == "cpu0" | |||
def test_stack(): | |||
@pytest.mark.parametrize("is_varnode", [True, False]) | |||
def test_stack(is_varnode): | |||
if is_varnode: | |||
network = Network() | |||
else: | |||
network = None | |||
data1 = np.random.random((3, 2, 2)).astype("float32") | |||
data2 = np.random.random((3, 2, 2)).astype("float32") | |||
data3 = np.random.random((3, 2, 2)).astype("float32") | |||
@@ -72,12 +93,20 @@ def test_stack(): | |||
def run(data1, data2): | |||
return F.stack([data1, data2], axis=ai) | |||
opr_test(cases, run, ref_fn=lambda x, y: np.stack([x, y], axis=ai)) | |||
opr_test( | |||
cases, run, ref_fn=lambda x, y: np.stack([x, y], axis=ai), network=network | |||
) | |||
@pytest.mark.parametrize("is_varnode", [True, False]) | |||
def test_split(is_varnode): | |||
if is_varnode: | |||
network = Network() | |||
else: | |||
network = None | |||
def test_split(): | |||
data = np.random.random((2, 3, 4, 5)).astype(np.float32) | |||
inp = tensor(data) | |||
inp = make_tensor(data, network) | |||
mge_out0 = F.split(inp, 2, axis=3) | |||
mge_out1 = F.split(inp, [3], axis=3) | |||
@@ -106,26 +135,42 @@ def test_split(): | |||
assert str(e) == "Invalid nsplits_or_secions: [3, 3, 5]" | |||
def test_reshape(): | |||
@pytest.mark.parametrize("is_varnode", [True, False]) | |||
def test_reshape(is_varnode): | |||
if is_varnode: | |||
network = Network() | |||
else: | |||
network = None | |||
x = np.arange(6, dtype="float32") | |||
xx = tensor(x) | |||
xx = make_tensor(x, network) | |||
y = x.reshape(1, 2, 3) | |||
for shape in [ | |||
(1, 2, 3), | |||
(1, -1, 3), | |||
(1, tensor(-1), 3), | |||
(1, make_tensor(-1, network), 3), | |||
np.array([1, -1, 3], dtype="int32"), | |||
tensor([1, -1, 3]), | |||
make_tensor([1, -1, 3], network), | |||
]: | |||
yy = F.reshape(xx, shape) | |||
np.testing.assert_equal(yy.numpy(), y) | |||
def test_reshape_shape_inference(): | |||
x_shape_known = tensor([1, 2, 3, 4], dtype="float32") | |||
x_shape_unknown = F.broadcast_to(tensor([1.0]), shape=tensor([1, 1, 1, 1]).sum()) | |||
tshp_unknown = astensor1d((tensor([2]), tensor([2])), x_shape_known) | |||
@pytest.mark.parametrize("is_varnode", [True, False]) | |||
def test_reshape_shape_inference(is_varnode): | |||
if is_varnode: | |||
network = Network() | |||
else: | |||
network = None | |||
x_shape_known = make_tensor([1, 2, 3, 4], network) | |||
x_shape_unknown = F.broadcast_to( | |||
make_tensor([1.0], network), shape=make_tensor([1, 1, 1, 1], network).sum() | |||
) | |||
tshp_unknown = astensor1d( | |||
(make_tensor([2], network), make_tensor([2], network)), x_shape_known | |||
) | |||
tshp_known = astensor1d((2, 2), x_shape_known) | |||
tshp_known_unspec = astensor1d((2, -1), x_shape_known) | |||
@@ -146,12 +191,18 @@ def test_reshape_shape_inference(): | |||
{"input": [x_shape_unknown, tshp_known], "output": [(2, 2),]}, | |||
{"input": [x_shape_unknown, tshp_known_unspec], "output": [(2, 2),]}, | |||
] | |||
opr_test(cases, func, compare_fn=check_shape, test_trace=True) | |||
opr_test(cases, func, compare_fn=check_shape, test_trace=True, network=network) | |||
@pytest.mark.parametrize("is_varnode", [True, False]) | |||
def test_squeeze(is_varnode): | |||
if is_varnode: | |||
network = Network() | |||
else: | |||
network = None | |||
def test_squeeze(): | |||
x = np.arange(6, dtype="float32").reshape(1, 2, 3, 1) | |||
xx = tensor(x) | |||
xx = make_tensor(x, network) | |||
for axis in [None, 3, -4, (3, -4)]: | |||
y = np.squeeze(x, axis) | |||
@@ -159,9 +210,15 @@ def test_squeeze(): | |||
np.testing.assert_equal(y, yy.numpy()) | |||
def test_expand_dims(): | |||
@pytest.mark.parametrize("is_varnode", [True, False]) | |||
def test_expand_dims(is_varnode): | |||
if is_varnode: | |||
network = Network() | |||
else: | |||
network = None | |||
x = np.arange(6, dtype="float32").reshape(2, 3) | |||
xx = tensor(x) | |||
xx = make_tensor(x, network) | |||
for axis in [2, -3, (3, -4), (1, -4)]: | |||
y = np.expand_dims(x, axis) | |||
@@ -169,11 +226,17 @@ def test_expand_dims(): | |||
np.testing.assert_equal(y, yy.numpy()) | |||
def test_elemwise_dtype_promotion(): | |||
@pytest.mark.parametrize("is_varnode", [True, False]) | |||
def test_elemwise_dtype_promotion(is_varnode): | |||
if is_varnode: | |||
network = Network() | |||
else: | |||
network = None | |||
x = np.random.rand(2, 3).astype("float32") | |||
y = np.random.rand(1, 3).astype("float16") | |||
xx = tensor(x) | |||
yy = tensor(y) | |||
xx = make_tensor(x, network) | |||
yy = make_tensor(y, network) | |||
z = xx * yy | |||
np.testing.assert_equal(z.numpy(), x * y) | |||
@@ -184,7 +247,13 @@ def test_elemwise_dtype_promotion(): | |||
np.testing.assert_equal(z.numpy(), x - y) | |||
def test_linspace(): | |||
@pytest.mark.parametrize("is_varnode", [True, False]) | |||
def test_linspace(is_varnode): | |||
if is_varnode: | |||
network = Network() | |||
else: | |||
network = None | |||
cases = [ | |||
{"input": [1, 9, 9]}, | |||
{"input": [3, 10, 8]}, | |||
@@ -193,6 +262,7 @@ def test_linspace(): | |||
cases, | |||
F.linspace, | |||
ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32), | |||
network=network, | |||
) | |||
cases = [ | |||
@@ -203,20 +273,28 @@ def test_linspace(): | |||
cases, | |||
F.linspace, | |||
ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32), | |||
network=network, | |||
) | |||
cases = [ | |||
{"input": [1, tensor(9), 9]}, | |||
{"input": [tensor(1), 9, tensor(9)]}, | |||
{"input": [1, make_tensor(9, network), 9]}, | |||
{"input": [make_tensor(1, network), 9, make_tensor(9, network)]}, | |||
] | |||
opr_test( | |||
cases, | |||
F.linspace, | |||
ref_fn=lambda start, end, step: np.linspace(1, 9, 9, dtype=np.float32), | |||
network=network, | |||
) | |||
def test_arange(): | |||
@pytest.mark.parametrize("is_varnode", [True, False]) | |||
def test_arange(is_varnode): | |||
if is_varnode: | |||
network = Network() | |||
else: | |||
network = None | |||
cases = [ | |||
{"input": [1, 9, 1]}, | |||
{"input": [2, 10, 2]}, | |||
@@ -225,6 +303,7 @@ def test_arange(): | |||
cases, | |||
F.arange, | |||
ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32), | |||
network=network, | |||
) | |||
cases = [ | |||
@@ -235,6 +314,7 @@ def test_arange(): | |||
cases, | |||
F.arange, | |||
ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32), | |||
network=network, | |||
) | |||
cases = [ | |||
@@ -245,20 +325,33 @@ def test_arange(): | |||
cases, | |||
F.arange, | |||
ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32), | |||
network=network, | |||
) | |||
def test_round(): | |||
@pytest.mark.parametrize("is_varnode", [True, False]) | |||
def test_round(is_varnode): | |||
if is_varnode: | |||
network = Network() | |||
else: | |||
network = None | |||
data1_shape = (15,) | |||
data2_shape = (25,) | |||
data1 = np.random.random(data1_shape).astype(np.float32) | |||
data2 = np.random.random(data2_shape).astype(np.float32) | |||
cases = [{"input": data1}, {"input": data2}] | |||
opr_test(cases, F.round, ref_fn=np.round) | |||
opr_test(cases, F.round, ref_fn=np.round, network=network) | |||
def test_flatten(): | |||
@pytest.mark.parametrize("is_varnode", [True, False]) | |||
def test_flatten(is_varnode): | |||
if is_varnode: | |||
network = Network() | |||
else: | |||
network = None | |||
data0_shape = (2, 3, 4, 5) | |||
data1_shape = (4, 5, 6, 7) | |||
data0 = np.random.random(data0_shape).astype(np.float32) | |||
@@ -273,7 +366,7 @@ def test_flatten(): | |||
{"input": data0, "output": output0}, | |||
{"input": data1, "output": output1}, | |||
] | |||
opr_test(cases, F.flatten, compare_fn=compare_fn) | |||
opr_test(cases, F.flatten, compare_fn=compare_fn, network=network) | |||
output0 = (2, 3 * 4 * 5) | |||
output1 = (4, 5 * 6 * 7) | |||
@@ -281,7 +374,7 @@ def test_flatten(): | |||
{"input": data0, "output": output0}, | |||
{"input": data1, "output": output1}, | |||
] | |||
opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=1) | |||
opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=1, network=network) | |||
output0 = (2, 3, 4 * 5) | |||
output1 = (4, 5, 6 * 7) | |||
@@ -289,7 +382,7 @@ def test_flatten(): | |||
{"input": data0, "output": output0}, | |||
{"input": data1, "output": output1}, | |||
] | |||
opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=2) | |||
opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=2, network=network) | |||
output0 = (2, 3 * 4, 5) | |||
output1 = (4, 5 * 6, 7) | |||
@@ -297,10 +390,23 @@ def test_flatten(): | |||
{"input": data0, "output": output0}, | |||
{"input": data1, "output": output1}, | |||
] | |||
opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=1, end_axis=2) | |||
opr_test( | |||
cases, | |||
F.flatten, | |||
compare_fn=compare_fn, | |||
start_axis=1, | |||
end_axis=2, | |||
network=network, | |||
) | |||
@pytest.mark.parametrize("is_varnode", [True, False]) | |||
def test_broadcast(is_varnode): | |||
if is_varnode: | |||
network = Network() | |||
else: | |||
network = None | |||
def test_broadcast(): | |||
input1_shape = (20, 30) | |||
output1_shape = (30, 20, 30) | |||
data1 = np.random.random(input1_shape).astype(np.float32) | |||
@@ -309,14 +415,19 @@ def test_broadcast(): | |||
output2_shape = (20, 10, 20) | |||
data2 = np.random.random(input2_shape).astype(np.float32) | |||
input3_shape = (10, 10) | |||
output3_shape = (10, 10) | |||
data3 = np.random.random(input3_shape).astype(np.float32) | |||
def compare_fn(x, y): | |||
assert x.shape[0] == y | |||
cases = [ | |||
{"input": [data1, output1_shape], "output": output1_shape}, | |||
{"input": [data2, output2_shape], "output": output2_shape}, | |||
{"input": [data3, output3_shape], "output": output3_shape}, | |||
] | |||
opr_test(cases, F.broadcast_to, compare_fn=compare_fn) | |||
opr_test(cases, F.broadcast_to, compare_fn=compare_fn, network=network) | |||
x = F.ones((2, 1, 3)) | |||
with pytest.raises(RuntimeError): | |||
@@ -329,35 +440,41 @@ def test_broadcast(): | |||
F.broadcast_to(x, (1, 3)) | |||
def test_utils_astensor1d(): | |||
reference = tensor(0) | |||
@pytest.mark.parametrize("is_varnode", [True, False]) | |||
def test_utils_astensor1d(is_varnode): | |||
if is_varnode: | |||
network = Network() | |||
else: | |||
network = None | |||
reference = make_tensor(0, network) | |||
# literal | |||
x = [1, 2, 3] | |||
for dtype in [None, "float32"]: | |||
xx = astensor1d(x, reference, dtype=dtype) | |||
assert type(xx) is tensor | |||
assert isinstance(xx, type(reference)) | |||
np.testing.assert_equal(xx.numpy(), x) | |||
# numpy array | |||
x = np.asarray([1, 2, 3], dtype="int32") | |||
for dtype in [None, "float32"]: | |||
xx = astensor1d(x, reference, dtype=dtype) | |||
assert type(xx) is tensor | |||
assert isinstance(xx, type(reference)) | |||
np.testing.assert_equal(xx.numpy(), x.astype(dtype) if dtype else x) | |||
# tensor | |||
x = tensor([1, 2, 3], dtype="int32") | |||
x = make_tensor([1, 2, 3], network) | |||
for dtype in [None, "float32"]: | |||
xx = astensor1d(x, reference, dtype=dtype) | |||
assert type(xx) is tensor | |||
assert isinstance(xx, type(reference)) | |||
np.testing.assert_equal(xx.numpy(), x.numpy()) | |||
# mixed | |||
x = [1, tensor(2), 3] | |||
x = [1, make_tensor(2, network), 3] | |||
for dtype in [None, "float32"]: | |||
xx = astensor1d(x, reference, dtype=dtype) | |||
assert type(xx) is tensor | |||
assert isinstance(xx, type(reference)) | |||
np.testing.assert_equal(xx.numpy(), [1, 2, 3]) | |||
@@ -377,35 +494,60 @@ def test_device(): | |||
np.testing.assert_almost_equal(y5.numpy(), y6.numpy()) | |||
def test_identity(): | |||
x = tensor(np.random.random((5, 10)).astype(np.float32)) | |||
@pytest.mark.parametrize("is_varnode", [True, False]) | |||
def test_identity(is_varnode): | |||
if is_varnode: | |||
network = Network() | |||
else: | |||
network = None | |||
x = make_tensor(np.random.random((5, 10)).astype(np.float32), network) | |||
y = F.copy(x) | |||
np.testing.assert_equal(y.numpy(), x) | |||
def copy_test(dst, src): | |||
def copy_test(dst, src, network): | |||
data = np.random.random((2, 3)).astype(np.float32) | |||
x = tensor(data, device=src) | |||
x = make_tensor(data, device=src, network=network) | |||
y = F.copy(x, dst) | |||
assert np.allclose(data, y.numpy()) | |||
z = x.to(dst) | |||
assert np.allclose(data, z.numpy()) | |||
if network is None: | |||
z = x.to(dst) | |||
assert np.allclose(data, z.numpy()) | |||
@pytest.mark.require_ngpu(1) | |||
def test_copy_h2d(): | |||
copy_test("cpu0", "gpu0") | |||
@pytest.mark.parametrize("is_varnode", [True, False]) | |||
def test_copy_h2d(is_varnode): | |||
if is_varnode: | |||
network = Network() | |||
else: | |||
network = None | |||
copy_test("cpu0", "gpu0", network=network) | |||
@pytest.mark.require_ngpu(1) | |||
def test_copy_d2h(): | |||
copy_test("gpu0", "cpu0") | |||
@pytest.mark.parametrize("is_varnode", [True, False]) | |||
def test_copy_d2h(is_varnode): | |||
if is_varnode: | |||
network = Network() | |||
else: | |||
network = None | |||
copy_test("gpu0", "cpu0", network=network) | |||
@pytest.mark.require_ngpu(2) | |||
def test_copy_d2d(): | |||
copy_test("gpu0", "gpu1") | |||
copy_test("gpu0:0", "gpu0:1") | |||
@pytest.mark.parametrize("is_varnode", [True, False]) | |||
def test_copy_d2d(is_varnode): | |||
if is_varnode: | |||
network = Network() | |||
else: | |||
network = None | |||
copy_test("gpu0", "gpu1", network=network) | |||
copy_test("gpu0:0", "gpu0:1", network=network) | |||
@pytest.mark.parametrize( | |||
@@ -420,7 +562,13 @@ def test_copy_d2d(): | |||
((), 10, None), | |||
], | |||
) | |||
def test_repeat(shape, repeats, axis): | |||
@pytest.mark.parametrize("is_varnode", [True, False]) | |||
def test_repeat(shape, repeats, axis, is_varnode): | |||
if is_varnode: | |||
network = Network() | |||
else: | |||
network = None | |||
def repeat_func(inp): | |||
return F.repeat(inp=inp, repeats=repeats, axis=axis) | |||
@@ -432,7 +580,10 @@ def test_repeat(shape, repeats, axis): | |||
cases = [{"input": np.array(1.23)}] | |||
opr_test( | |||
cases, repeat_func, ref_fn=lambda inp: np.repeat(inp, repeats, axis), | |||
cases, | |||
repeat_func, | |||
ref_fn=lambda inp: np.repeat(inp, repeats, axis), | |||
network=network, | |||
) | |||
@@ -445,14 +596,16 @@ def test_repeat(shape, repeats, axis): | |||
((2, 3, 4, 5), (2, 2, 2, 2, 2, 2, 2)), | |||
], | |||
) | |||
def test_tile(shape, reps): | |||
@pytest.mark.parametrize("is_varnode", [True]) | |||
def test_tile(shape, reps, is_varnode): | |||
if is_varnode: | |||
network = Network() | |||
else: | |||
network = None | |||
def tile_func(inp): | |||
return F.tile(inp=inp, reps=reps) | |||
cases = [ | |||
{"input": np.random.randn(*shape).astype("float32")}, | |||
] | |||
cases = [{"input": np.random.randn(*shape).astype("float32")}] | |||
opr_test( | |||
cases, tile_func, ref_fn=lambda inp: np.tile(inp, reps), | |||
) | |||
opr_test(cases, tile_func, ref_fn=lambda inp: np.tile(inp, reps), network=network) |
@@ -30,7 +30,10 @@ min_max_fakequant_qconfig = QConfig( | |||
act_fake_quant=partial(FakeQuantize, dtype="qint8"), | |||
) | |||
inp_scale = np.float32(np.random.rand() + 1) | |||
def gen_inp_scale(): | |||
return np.float32(np.random.rand() + 1) | |||
min_val = np.random.randint(-127, 0, size=(2,)).astype("float32") | |||
max_val = np.random.randint(1, 127, size=(2,)).astype("float32") | |||
@@ -116,6 +119,7 @@ def test_dequant_stub(): | |||
q_net.eval() | |||
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32")) | |||
inp_scale = gen_inp_scale() | |||
x = fake_quant_act(x, inp_scale) | |||
x.qparams.scale = inp_scale | |||
@@ -192,6 +196,7 @@ def test_linear(): | |||
init_qat_net(qat_net) | |||
x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32")) | |||
inp_scale = gen_inp_scale() | |||
x = fake_quant_act(x, inp_scale) | |||
x.qparams.update(create_qparams(QuantMode.SYMMERTIC, "qint8", inp_scale)) | |||
@@ -235,6 +240,7 @@ def test_conv(module): | |||
init_qat_net(qat_net) | |||
x = mge.tensor(np.random.normal(size=(1, 3, 3, 3)).astype("float32")) | |||
inp_scale = gen_inp_scale() | |||
x = fake_quant_act(x, inp_scale) | |||
x.qparams.update(create_qparams(QuantMode.SYMMERTIC, "qint8", inp_scale)) | |||
@@ -269,3 +275,41 @@ def test_conv(module): | |||
np.testing.assert_allclose(qat_without_fakequant, normal, atol=1e-5) | |||
np.testing.assert_allclose(qat, fake_quant_normal, atol=act_scale) | |||
np.testing.assert_allclose(q, fake_quant_normal.numpy(), atol=act_scale) | |||
def test_concat(): | |||
normal_net = Float.Concat() | |||
normal_net.eval() | |||
qat_net = QAT.Concat() | |||
qat_net.eval() | |||
disable_observer(qat_net) | |||
propagate_qconfig(qat_net, min_max_fakequant_qconfig) | |||
init_qat_net(qat_net) | |||
inps = [] | |||
inps_int8 = [] | |||
for i in range(3): | |||
inp_scale = gen_inp_scale() | |||
inps.append(mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))) | |||
inps[i] = fake_quant_act(inps[i], inp_scale) | |||
inps[i].qparams.update(create_qparams(QuantMode.SYMMERTIC, "qint8", inp_scale)) | |||
inps_int8.append(quant(inps[i], inp_scale)) | |||
qat_from_float = QAT.Concat.from_float_module(normal_net) | |||
qat_from_float.eval() | |||
disable_fake_quant(qat_from_float) | |||
disable_observer(qat_from_float) | |||
q_net = Q.Concat.from_qat_module(qat_net) | |||
q_net.eval() | |||
normal = normal_net(inps) | |||
qat_without_fakequant = qat_from_float(inps) | |||
fake_quant_normal = fake_quant_act(normal_net(inps), act_scale) | |||
qat = qat_net(inps) | |||
q = q_net(inps_int8).numpy() * act_scale | |||
np.testing.assert_allclose(qat_without_fakequant, normal) | |||
np.testing.assert_allclose(qat, fake_quant_normal.numpy()) | |||
np.testing.assert_allclose(q, fake_quant_normal.numpy()) |
@@ -124,6 +124,35 @@ def test_with_submodule(symbolic): | |||
@pytest.mark.parametrize("symbolic", [False, True]) | |||
def test_with_submodule_in_container(symbolic): | |||
class Simple(M.Module): | |||
def __init__(self, name): | |||
super().__init__() | |||
self.name = name | |||
self.l0 = [M.Linear(3, 3) for _ in range(2)] | |||
self.l1 = tuple(self.l0) | |||
self.l2 = dict(zip(["l2-0", "l2-1"], self.l0)) | |||
def forward(self, x): | |||
for i in range(2): | |||
x = self.l0[i](x) | |||
x = self.l1[i](x) | |||
x = self.l2["l2-%d" % i](x) | |||
return x | |||
m = Simple("simple") | |||
ops = _dump_and_load(m, symbolic) | |||
assert ops[-1].outputs[0].name == "simple.l2.l2-1.ADD" | |||
assert ops[-1].name == "simple.l2.l2-1.ADD" | |||
assert ops[-2].name == "simple.l2.l2-1.MatrixMul" | |||
assert ops[-3].name == "simple.l1.1.ADD" | |||
assert ops[-4].name == "simple.l1.1.MatrixMul" | |||
assert ops[-5].name == "simple.l0.1.ADD" | |||
assert ops[-6].name == "simple.l0.1.MatrixMul" | |||
@pytest.mark.parametrize("symbolic", [False, True]) | |||
def test_named_submodule(symbolic): | |||
class Simple(M.Module): | |||
def __init__(self, name): | |||
@@ -264,4 +293,4 @@ def test_quantized_module_user_naming_param(symbolic): | |||
(matrix_mul_op,) = [op for op in ops if op.name == "simple.linear.MatrixMul"] | |||
for var in matrix_mul_op.inputs: | |||
assert var.name in ("simple.quant.TypeCvt", "simple.linear.user-weight") | |||
# BUG bias' name does not meet expectations because of astype operator after quantization | |||
# WONTFIX: bias' name does not meet expectations because of astype operator after quantization |
@@ -34,13 +34,11 @@ def test_replace_var(): | |||
vara = graph.var_filter.name("a").as_unique() | |||
varb = graph.var_filter.name("b").as_unique() | |||
out = F.mul(vara.var, varb.var) | |||
out = F.mul(vara, varb) | |||
out = F.relu(out) | |||
var_list = graph.add_dep_oprs(out) | |||
opnode = list(graph.opr_filter.has_input(vara)) | |||
repl_dict = {opnode[0].outputs[0]: var_list[0]} | |||
repl_dict = {opnode[0].outputs[0]: out} | |||
graph.replace_vars(repl_dict) | |||
modified_model = io.BytesIO() | |||
@@ -72,14 +70,12 @@ def test_replace_opr(): | |||
vara = graph.var_filter.name("a").as_unique() | |||
varb = graph.var_filter.name("b").as_unique() | |||
out1 = F.sub(vara.var, varb.var) | |||
out1 = F.sub(vara, varb) | |||
out1 = F.relu(out1) | |||
var_list = graph.add_dep_oprs(out1) | |||
repl_opr = as_oprnode(var_list) | |||
out1 = graph.add_dep_oprs(out1) | |||
orig_opr = graph.opr_filter.has_input(vara).as_unique() | |||
repl_dict = {orig_opr: repl_opr} | |||
repl_dict = {orig_opr: out1[0].owner} | |||
graph.replace_oprs(repl_dict) | |||
modified_model1 = io.BytesIO() | |||
graph.dump(modified_model1) | |||
@@ -171,8 +167,7 @@ def test_add_input(): | |||
inp_c = graph.make_input_node((2,), np.int32, name="c") | |||
varo = graph.var_filter.name("o").as_unique() | |||
out = F.add(varo.var, inp_c.var) | |||
out = graph.add_dep_oprs(out)[0] | |||
out = F.add(varo, inp_c) | |||
out.name = "o1" | |||
graph.remove_output(varo) | |||
graph.add_output(out) | |||
@@ -206,12 +201,11 @@ def test_add_output(): | |||
var_a = net.var_filter.name("a").as_unique() | |||
var_b = net.var_filter.name("b").as_unique() | |||
y = F.add(var_a.var, var_b.var) | |||
y = F.add(var_a, var_b) | |||
y = F.sigmoid(y) | |||
new_vars = net.add_dep_oprs(y)[0] | |||
new_vars.name = "o1" | |||
net.add_output(new_vars) | |||
y.name = "o1" | |||
net.add_output(y) | |||
modified_model = io.BytesIO() | |||
net.dump(modified_model) | |||
@@ -466,6 +466,19 @@ def test_topk(): | |||
check_pygraph_dump(fwd, [x], [top, indices]) | |||
def test_nvof(): | |||
if not is_cuda_available(): | |||
return | |||
src_shape = (4, 5, 224, 224, 4) | |||
src = np.random.randint(0, 255, src_shape).astype("uint8") | |||
src = Tensor(src) | |||
@trace(symbolic=True, capture_as_const=True) | |||
def fwd(src): | |||
return F.nn.nvof(src, precision=1) | |||
result = fwd(src) | |||
check_pygraph_dump(fwd, [src], [result]) | |||
def test_random(): | |||
@@ -6,5 +6,5 @@ | |||
# Unless required by applicable law or agreed to in writing, | |||
# software distributed under the License is distributed on an | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
__version__ = "1.3.0.dev" | |||
__version__ = "1.3.1" | |||
@@ -24,14 +24,14 @@ std::shared_ptr<OpDef> make_from_op_node(cg::OperatorNodeBase* node_) { | |||
return Broadcast::make(); | |||
} | |||
cg::OperatorNodeBase* apply_on_var_node( | |||
auto apply_on_var_node( | |||
const OpDef& def, | |||
const VarNodeArray& inputs) { | |||
auto&& op = def.cast_final_safe<Broadcast>(); | |||
size_t nr_inp = inputs.size(); | |||
mgb_assert(nr_inp == 2, "Broadcast expects 2 inputs; got %lu actually", nr_inp); | |||
OperatorNodeConfig config{op.make_name()}; | |||
return opr::Broadcast::make(inputs[0], inputs[1], config).node()->owner_opr(); | |||
return opr::Broadcast::make(inputs[0], inputs[1], config); | |||
} | |||
bool valid_broadcast(const TensorShape& src_shape, | |||
@@ -1,6 +1,7 @@ | |||
# mgb tablegen executable | |||
set(TABLE_TARGET mgb-mlir-autogen) | |||
add_executable(${TABLE_TARGET} autogen.cpp) | |||
file(GLOB_RECURSE SRCS ${CMAKE_CURRENT_SOURCE_DIR}/*.h ${CMAKE_CURRENT_SOURCE_DIR}/*.cpp) | |||
add_executable(${TABLE_TARGET} ${SRCS}) | |||
target_include_directories(${TABLE_TARGET} PRIVATE ${MLIR_LLVM_INCLUDE_DIR}) | |||
target_link_libraries(${TABLE_TARGET} PRIVATE LLVMTableGen MLIRTableGen LLVMSupport) | |||
set(MGB_TABLEGEN_EXE ${TABLE_TARGET}) | |||
@@ -1,8 +1,17 @@ | |||
#include <iostream> | |||
#include <unordered_map> | |||
#include <functional> | |||
#include "./helper.h" | |||
/** | |||
* \file imperative/tablegen/autogen.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#include "./targets/cpp_class.h" | |||
#include "./targets/pybind11.h" | |||
#include "./targets/python_c_extension.h" | |||
using llvm::raw_ostream; | |||
using llvm::RecordKeeper; | |||
@@ -27,731 +36,7 @@ llvm::cl::opt<ActionType> action( | |||
clEnumValN(CPython, "gen-python-c-extension", | |||
"Generate python c extensions"))); | |||
using MgbAttrWrapper = mlir::tblgen::MgbAttrWrapperBase; | |||
using MgbEnumAttr = mlir::tblgen::MgbEnumAttrMixin; | |||
using MgbHashableAttr = mlir::tblgen::MgbHashableAttrMixin; | |||
using MgbAliasAttr = mlir::tblgen::MgbAliasAttrMixin; | |||
using MgbOp = mlir::tblgen::MgbOpBase; | |||
using MgbHashableOp = mlir::tblgen::MgbHashableOpMixin; | |||
llvm::StringRef attr_to_ctype(const mlir::tblgen::Attribute& attr_) { | |||
// Note: we have already registered the corresponding attr wrappers | |||
// for following basic ctypes so we needn't handle them here | |||
/* auto&& attr_type_name = attr.getAttrDefName(); | |||
if (attr_type_name == "UI32Attr") { | |||
return "uint32_t"; | |||
} | |||
if (attr_type_name == "UI64Attr") { | |||
return "uint64_t"; | |||
} | |||
if (attr_type_name == "I32Attr") { | |||
return "int32_t"; | |||
} | |||
if (attr_type_name == "F32Attr") { | |||
return "float"; | |||
} | |||
if (attr_type_name == "F64Attr") { | |||
return "double"; | |||
} | |||
if (attr_type_name == "StrAttr") { | |||
return "std::string"; | |||
} | |||
if (attr_type_name == "BoolAttr") { | |||
return "bool"; | |||
}*/ | |||
auto&& attr = llvm::cast<MgbAttrWrapper>(attr_); | |||
if (auto e = llvm::dyn_cast<MgbEnumAttr>(&attr)) { | |||
return e->getEnumName(); | |||
} | |||
return attr.getUnderlyingType(); | |||
} | |||
static void gen_op_def_c_header_single(raw_ostream &os, MgbOp& op) { | |||
os << formatv( | |||
"class {0} : public OpDefImplBase<{0}> {{\n" | |||
" MGB_DYN_TYPE_OBJ_FINAL_DECL;\n\n" | |||
"public:\n", | |||
op.getCppClassName() | |||
); | |||
// handle enum alias | |||
for (auto &&i : op.getMgbAttributes()) { | |||
if (auto attr = llvm::dyn_cast<MgbEnumAttr>(&i.attr)) { | |||
os << formatv( | |||
" using {0} = {1};\n", | |||
attr->getEnumName(), attr->getUnderlyingType() | |||
); | |||
} | |||
} | |||
for (auto &&i : op.getMgbAttributes()) { | |||
auto defaultValue = i.attr.getDefaultValue().str(); | |||
if (!defaultValue.empty()) { | |||
defaultValue = formatv(" = {0}", defaultValue); | |||
} | |||
os << formatv( | |||
" {0} {1}{2};\n", | |||
attr_to_ctype(i.attr), i.name, defaultValue | |||
); | |||
} | |||
auto gen_ctor = [&](auto&& paramList, auto&& memInitList, auto&& body) { | |||
os << formatv( | |||
" {0}({1}){2}{3}\n", | |||
op.getCppClassName(), paramList, memInitList, body | |||
); | |||
}; | |||
gen_ctor("", "", " = default;"); | |||
if (!op.getMgbAttributes().empty()) { | |||
std::vector<std::string> paramList, initList; | |||
for (auto &&i : op.getMgbAttributes()) { | |||
paramList.push_back(formatv( | |||
"{0} {1}_", attr_to_ctype(i.attr), i.name | |||
)); | |||
initList.push_back(formatv( | |||
"{0}({0}_)", i.name | |||
)); | |||
} | |||
paramList.push_back("std::string scope_ = {}"); | |||
gen_ctor(llvm::join(paramList, ", "), | |||
": " + llvm::join(initList, ", "), | |||
" { set_scope(scope_); }"); | |||
} | |||
auto packedParams = op.getPackedParams(); | |||
if (!packedParams.empty()) { | |||
std::vector<std::string> paramList, initList; | |||
for (auto &&p : packedParams) { | |||
auto&& paramFields = p.getFields(); | |||
auto&& paramType = p.getFullName(); | |||
auto&& paramName = formatv("packed_param_{0}", paramList.size()); | |||
paramList.push_back( | |||
paramFields.empty() ? paramType.str() | |||
: formatv("{0} {1}", paramType, paramName) | |||
); | |||
for (auto&& i : paramFields) { | |||
initList.push_back(formatv( | |||
"{0}({1}.{0})", i.name, paramName | |||
)); | |||
} | |||
} | |||
for (auto&& i : op.getExtraArguments()) { | |||
paramList.push_back(formatv( | |||
"{0} {1}_", attr_to_ctype(i.attr), i.name | |||
)); | |||
initList.push_back(formatv( | |||
"{0}({0}_)", i.name | |||
)); | |||
} | |||
gen_ctor(llvm::join(paramList, ", "), | |||
initList.empty() ? "" : ": " + llvm::join(initList, ", "), | |||
" {}"); | |||
} | |||
if (!packedParams.empty()) { | |||
for (auto&& p : packedParams) { | |||
auto accessor = p.getAccessor(); | |||
if (!accessor.empty()) { | |||
os << formatv( | |||
" {0} {1}() const {{\n", | |||
p.getFullName(), accessor | |||
); | |||
std::vector<llvm::StringRef> fields; | |||
for (auto&& i : p.getFields()) { | |||
fields.push_back(i.name); | |||
} | |||
os << formatv( | |||
" return {{{0}};\n", | |||
llvm::join(fields, ", ") | |||
); | |||
os << " }\n"; | |||
} | |||
} | |||
} | |||
if (auto decl = op.getExtraOpdefDecl()) { | |||
os << decl.getValue(); | |||
} | |||
os << formatv( | |||
"};\n\n" | |||
); | |||
} | |||
static void gen_to_string_trait_for_enum(raw_ostream &os, MgbOp& op) { | |||
for (auto &&i : op.getMgbAttributes()) { | |||
if (auto attr = llvm::dyn_cast<MgbEnumAttr>(&i.attr)) { | |||
if (attr->supportToString()) { | |||
std::vector<std::string> case_body; | |||
std::string ename = formatv("{0}::{1}", | |||
op.getCppClassName(), attr->getEnumName()); | |||
llvm::for_each(attr->getEnumMembers(), [&](auto&& v){ | |||
case_body.push_back(formatv( | |||
"case {0}::{1}: return \"{1}\";", ename, v)); | |||
}); | |||
os << formatv(R"( | |||
template <> | |||
struct ToStringTrait<{0}> { | |||
std::string operator()({0} e) const { | |||
switch (e) { | |||
{1} | |||
default: | |||
return "{0}::Unknown"; | |||
} | |||
} | |||
}; | |||
)", ename, llvm::join(case_body, "\n")); | |||
} | |||
} | |||
} | |||
} | |||
static void gen_op_def_c_body_single(raw_ostream &os, MgbOp& op) { | |||
auto&& className = op.getCppClassName(); | |||
os << formatv( | |||
"MGB_DYN_TYPE_OBJ_FINAL_IMPL({0});\n\n", className | |||
); | |||
auto formatMethImpl = [&](auto&& meth) { | |||
return formatv( | |||
"{0}_{1}_impl", className, meth | |||
); | |||
}; | |||
std::vector<std::string> methods; | |||
if (auto hashable = llvm::dyn_cast<MgbHashableOp>(&op)) { | |||
os << "namespace {\n"; | |||
// generate hash() | |||
mlir::tblgen::FmtContext ctx; | |||
os << formatv( | |||
"size_t {0}(const OpDef& def_) {{\n", | |||
formatMethImpl("hash") | |||
); | |||
os << formatv( | |||
" auto&& op_ = def_.cast_final_safe<{0}>();\n" | |||
" static_cast<void>(op_);\n", | |||
className | |||
); | |||
ctx.withSelf("op_"); | |||
os << mlir::tblgen::tgfmt(hashable->getHashFunctionTemplate(), &ctx); | |||
os << "}\n"; | |||
// generate is_same_st() | |||
os << formatv( | |||
"bool {0}(const OpDef& lhs_, const OpDef& rhs_) {{\n", | |||
formatMethImpl("is_same_st") | |||
); | |||
os << formatv( | |||
" auto &&a_ = lhs_.cast_final_safe<{0}>(),\n" | |||
" &&b_ = rhs_.cast_final_safe<{0}>();\n" | |||
" static_cast<void>(a_);\n" | |||
" static_cast<void>(b_);\n", | |||
className | |||
); | |||
os << mlir::tblgen::tgfmt(hashable->getCmpFunctionTemplate(), &ctx, "a_", "b_"); | |||
os << "}\n"; | |||
// generate props() | |||
os << formatv( | |||
"std::vector<std::pair<const char*, std::string>> {0}(const OpDef& def_) {{\n", | |||
formatMethImpl("props") | |||
); | |||
os << formatv( | |||
" auto&& op_ = def_.cast_final_safe<{0}>();\n" | |||
" static_cast<void>(op_);\n", | |||
className | |||
); | |||
ctx.withSelf("op_"); | |||
os << mlir::tblgen::tgfmt(hashable->getPropsFunctionTemplate(), &ctx); | |||
os << "}\n"; | |||
// generate make_name() | |||
os << formatv( | |||
"std::string {0}(const OpDef& def_) {{\n", formatMethImpl("make_name") | |||
); | |||
os << formatv( | |||
" auto&& op_ = def_.cast_final_safe<{0}>();\n" | |||
" static_cast<void>(op_);\n", | |||
className | |||
); | |||
ctx.withSelf("op_"); | |||
os << mlir::tblgen::tgfmt(op.getNameFunctionTemplate(), &ctx); | |||
os << "}\n"; | |||
os << "} // anonymous namespace\n"; | |||
methods.push_back("hash"); | |||
methods.push_back("is_same_st"); | |||
methods.push_back("props"); | |||
methods.push_back("make_name"); | |||
} | |||
if (!methods.empty()) { | |||
os << formatv( | |||
"OP_TRAIT_REG({0}, {0})", op.getCppClassName() | |||
); | |||
for (auto&& i : methods) { | |||
os << formatv( | |||
"\n .{0}({1})", i, formatMethImpl(i) | |||
); | |||
} | |||
os << ";\n\n"; | |||
} | |||
} | |||
struct EnumContext { | |||
std::unordered_map<unsigned int, std::pair<llvm::StringRef, llvm::StringRef>> enumAlias; | |||
}; | |||
static void gen_op_def_pybind11_single(raw_ostream &os, MgbOp& op, EnumContext& ctx) { | |||
auto className = op.getCppClassName(); | |||
os << formatv( | |||
"py::class_<{0}, std::shared_ptr<{0}>, OpDef> {0}Inst(m, \"{0}\");\n\n", | |||
className | |||
); | |||
for (auto&& i : op.getMgbAttributes()) { | |||
if (auto attr = llvm::dyn_cast<MgbEnumAttr>(&i.attr)) { | |||
unsigned int enumID; | |||
if (auto alias = llvm::dyn_cast<MgbAliasAttr>(attr)) { | |||
auto&& aliasBase = alias->getAliasBase(); | |||
enumID = | |||
llvm::cast<MgbEnumAttr>(aliasBase) | |||
.getBaseRecord()->getID(); | |||
} else { | |||
enumID = attr->getBaseRecord()->getID(); | |||
} | |||
auto&& enumAlias = ctx.enumAlias; | |||
auto&& iter = enumAlias.find(enumID); | |||
if (iter == enumAlias.end()) { | |||
os << formatv( | |||
"py::enum_<{0}::{1}>({0}Inst, \"{1}\")", | |||
className, attr->getEnumName() | |||
); | |||
std::vector<std::string> body; | |||
for (auto&& i: attr->getEnumMembers()) { | |||
os << formatv( | |||
"\n .value(\"{2}\", {0}::{1}::{2})", | |||
className, attr->getEnumName(), i | |||
); | |||
body.push_back(formatv( | |||
"if (str == \"{2}\") return {0}::{1}::{2};", | |||
className, attr->getEnumName(), i | |||
)); | |||
} | |||
if (attr->getEnumCombinedFlag()) { | |||
//! define operator | | |||
os << formatv( | |||
"\n .def(\"__or__\", []({0}::{1} s0, {0}::{1} s1) {{ " | |||
"\n return static_cast<{0}::{1}>(uint32_t(s0) | uint32_t(s1));" | |||
"\n })", | |||
className, attr->getEnumName()); | |||
//! define operator & | |||
os << formatv( | |||
"\n .def(\"__and__\", []({0}::{1} s0, {0}::{1} s1) {{" | |||
"\n return static_cast<{0}::{1}>(uint32_t(s0) & uint32_t(s1));" | |||
"\n })", | |||
className, attr->getEnumName()); | |||
} | |||
os << formatv( | |||
"\n .def(py::init([](const std::string& in) {" | |||
"\n auto&& str = normalize_enum(in);" | |||
"\n {0}" | |||
"\n throw py::cast_error(\"invalid enum value \" + in);" | |||
"\n }));\n", | |||
llvm::join(body, "\n ") | |||
); | |||
os << formatv( | |||
"py::implicitly_convertible<std::string, {0}::{1}>();\n\n", | |||
className, attr->getEnumName() | |||
); | |||
enumAlias.emplace(enumID, | |||
std::make_pair(className, attr->getEnumName())); | |||
} else { | |||
os << formatv( | |||
"{0}Inst.attr(\"{1}\") = {2}Inst.attr(\"{3}\");\n\n", | |||
className, attr->getEnumName(), | |||
iter->second.first, iter->second.second | |||
); | |||
} | |||
} | |||
} | |||
// generate op class binding | |||
os << formatv("{0}Inst", className); | |||
bool hasDefaultCtor = op.getMgbAttributes().empty(); | |||
if (!hasDefaultCtor) { | |||
os << "\n .def(py::init<"; | |||
std::vector<llvm::StringRef> targs; | |||
for (auto &&i : op.getMgbAttributes()) { | |||
targs.push_back(i.attr.getReturnType()); | |||
} | |||
os << llvm::join(targs, ", "); | |||
os << ", std::string>()"; | |||
for (auto &&i : op.getMgbAttributes()) { | |||
os << formatv(", py::arg(\"{0}\")", i.name); | |||
auto defaultValue = i.attr.getDefaultValue(); | |||
if (!defaultValue.empty()) { | |||
os << formatv(" = {0}", defaultValue); | |||
} else { | |||
hasDefaultCtor = true; | |||
} | |||
} | |||
os << ", py::arg(\"scope\") = {})"; | |||
} | |||
if (hasDefaultCtor) { | |||
os << "\n .def(py::init<>())"; | |||
} | |||
for (auto &&i : op.getMgbAttributes()) { | |||
os << formatv( | |||
"\n .def_readwrite(\"{0}\", &{1}::{0})", | |||
i.name, className | |||
); | |||
} | |||
os << ";\n\n"; | |||
} | |||
static std::string gen_op_def_python_c_extension_enum( | |||
raw_ostream& os, EnumContext& ctx, MgbEnumAttr* attr, | |||
llvm::StringRef className) { | |||
std::string body; | |||
unsigned int enumID; | |||
if (auto alias = llvm::dyn_cast<MgbAliasAttr>(attr)) { | |||
auto&& aliasBase = alias->getAliasBase(); | |||
enumID = llvm::cast<MgbEnumAttr>(aliasBase).getBaseRecord()->getID(); | |||
} else { | |||
enumID = attr->getBaseRecord()->getID(); | |||
} | |||
auto&& enumAlias = ctx.enumAlias; | |||
auto&& iter = enumAlias.find(enumID); | |||
auto enumName = attr->getEnumName(); | |||
body += "{\n"; | |||
body += formatv("auto& e_type = EnumWrapper<{0}::{1}>::type;", className, | |||
enumName); | |||
if (iter == enumAlias.end()) { | |||
os << formatv( | |||
"template<> PyTypeObject EnumWrapper<{0}::{1}>::type={{};\n", | |||
className, enumName); | |||
os << formatv( | |||
"template<> const char* EnumWrapper<{0}::{1}>::name = " | |||
"\"{0}.{1}\";\n", | |||
className, enumName); | |||
std::vector<std::string> pairStr; | |||
for (auto&& i : attr->getEnumMembers()) { | |||
pairStr.push_back( | |||
formatv("{{normalize_enum(\"{2}\"), {0}::{1}::{2}}", | |||
className, enumName, i)); | |||
} | |||
os << formatv(R"( | |||
template<> std::unordered_map<std::string, {0}::{1}> | |||
EnumWrapper<{0}::{1}>::str2type = {{ | |||
{2} | |||
}; | |||
)", | |||
className, enumName, llvm::join(pairStr, ", ")); | |||
pairStr.clear(); | |||
for (auto&& i : attr->getEnumMembers()) { | |||
pairStr.push_back( | |||
formatv("{{{0}::{1}::{2}, normalize_enum(\"{2}\")}", | |||
className, enumName, i)); | |||
} | |||
os << formatv(R"( | |||
template<> std::unordered_map<{0}::{1}, std::string> | |||
EnumWrapper<{0}::{1}>::type2str = {{ | |||
{2} | |||
}; | |||
)", | |||
className, enumName, llvm::join(pairStr, ", ")); | |||
body += formatv(R"( | |||
e_type = {{PyVarObject_HEAD_INIT(NULL, 0)}; | |||
e_type.tp_name = "megengine.core._imperative_rt.ops.{0}.{1}"; | |||
e_type.tp_basicsize = sizeof(EnumWrapper<{0}::{1}>); | |||
e_type.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE; | |||
e_type.tp_doc = "{0}.{1}"; | |||
e_type.tp_base = &PyBaseObject_Type; | |||
e_type.tp_repr = EnumWrapper<{0}::{1}>::py_repr; | |||
e_type.tp_richcompare = EnumWrapper<{0}::{1}>::tp_richcompare; | |||
mgb_assert(PyType_Ready(&e_type) >= 0); | |||
)", | |||
className, enumName); | |||
for (auto&& i : attr->getEnumMembers()) { | |||
body += formatv(R"({{ | |||
PyObject* inst = e_type.tp_alloc(&e_type, 0); | |||
reinterpret_cast<EnumWrapper<{0}::{1}>*>(inst)->value = {0}::{1}::{2}; | |||
mgb_assert(PyDict_SetItemString(e_type.tp_dict, "{2}", inst) >= 0); | |||
})", | |||
className, enumName, i); | |||
} | |||
enumAlias.emplace(enumID, std::make_pair(className, enumName)); | |||
} | |||
body += formatv(R"( | |||
PyType_Modified(&e_type); | |||
mgb_assert(PyDict_SetItemString( | |||
py_type.tp_dict, "{0}", reinterpret_cast<PyObject*>(&e_type)) >= 0); | |||
)", | |||
enumName); | |||
body += "}\n"; | |||
return body; | |||
} | |||
static std::string gen_op_def_python_c_extension_bit_combined_enum( | |||
raw_ostream& os, EnumContext& ctx, MgbEnumAttr* attr, | |||
llvm::StringRef className) { | |||
std::string body; | |||
unsigned int enumID; | |||
if (auto alias = llvm::dyn_cast<MgbAliasAttr>(attr)) { | |||
auto&& aliasBase = alias->getAliasBase(); | |||
enumID = llvm::cast<MgbEnumAttr>(aliasBase).getBaseRecord()->getID(); | |||
} else { | |||
enumID = attr->getBaseRecord()->getID(); | |||
} | |||
auto&& enumAlias = ctx.enumAlias; | |||
auto&& iter = enumAlias.find(enumID); | |||
auto enumName = attr->getEnumName(); | |||
body += "{\n"; | |||
body += formatv("auto& e_type = BitCombinedEnumWrapper<{0}::{1}>::type;", | |||
className, enumName); | |||
if (iter == enumAlias.end()) { | |||
os << formatv( | |||
"template<> PyTypeObject " | |||
"BitCombinedEnumWrapper<{0}::{1}>::type={{};\n", | |||
className, enumName); | |||
os << formatv( | |||
"template<> PyNumberMethods " | |||
"BitCombinedEnumWrapper<{0}::{1}>::number_methods={{};\n", | |||
className, enumName); | |||
os << formatv( | |||
"template<> const char* BitCombinedEnumWrapper<{0}::{1}>::name " | |||
"= \"{0}.{1}\";\n", | |||
className, enumName); | |||
os << formatv( | |||
"template<> struct EnumTrait<{0}::{1}> {{ static constexpr " | |||
"bool is_bit_combined = true;};\n", | |||
className, enumName); | |||
std::vector<std::string> pairStr; | |||
for (auto&& i : attr->getEnumMembers()) { | |||
pairStr.push_back( | |||
formatv("{{normalize_enum(\"{2}\"), {0}::{1}::{2}}", | |||
className, enumName, i)); | |||
} | |||
os << formatv(R"( | |||
template<> std::unordered_map<std::string, {0}::{1}> | |||
BitCombinedEnumWrapper<{0}::{1}>::str2type = {{ | |||
{2} | |||
}; | |||
)", | |||
className, enumName, llvm::join(pairStr, ", ")); | |||
pairStr.clear(); | |||
for (auto&& i : attr->getEnumMembers()) { | |||
pairStr.push_back( | |||
formatv("{{{0}::{1}::{2}, normalize_enum(\"{2}\")}", | |||
className, enumName, i)); | |||
} | |||
os << formatv(R"( | |||
template<> std::unordered_map<{0}::{1}, std::string> | |||
BitCombinedEnumWrapper<{0}::{1}>::type2str = {{ | |||
{2} | |||
}; | |||
)", | |||
className, enumName, llvm::join(pairStr, ", ")); | |||
body += formatv(R"( | |||
e_type = {{PyVarObject_HEAD_INIT(NULL, 0)}; | |||
e_type.tp_name = "megengine.core._imperative_rt.ops.{0}.{1}"; | |||
e_type.tp_basicsize = sizeof(BitCombinedEnumWrapper<{0}::{1}>); | |||
e_type.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE; | |||
e_type.tp_doc = "{0}.{1}"; | |||
e_type.tp_base = &PyBaseObject_Type; | |||
e_type.tp_new = BitCombinedEnumWrapper<{0}::{1}>::py_new_combined_enum; | |||
e_type.tp_init = BitCombinedEnumWrapper<{0}::{1}>::py_init; | |||
e_type.tp_repr = BitCombinedEnumWrapper<{0}::{1}>::py_repr; | |||
e_type.tp_richcompare = BitCombinedEnumWrapper<{0}::{1}>::tp_richcompare; | |||
auto& number_method = BitCombinedEnumWrapper<{0}::{1}>::number_methods; | |||
number_method.nb_or = BitCombinedEnumWrapper<{0}::{1}>::py_or; | |||
number_method.nb_and = BitCombinedEnumWrapper<{0}::{1}>::py_and; | |||
e_type.tp_as_number = &number_method; | |||
mgb_assert(PyType_Ready(&e_type) >= 0); | |||
)", | |||
className, enumName); | |||
for (auto&& i : attr->getEnumMembers()) { | |||
body += formatv(R"({{ | |||
PyObject* inst = e_type.tp_alloc(&e_type, 0); | |||
reinterpret_cast<BitCombinedEnumWrapper<{0}::{1}>*>(inst)->value = {0}::{1}::{2}; | |||
mgb_assert(PyDict_SetItemString(e_type.tp_dict, "{2}", inst) >= 0); | |||
})", | |||
className, enumName, i); | |||
} | |||
enumAlias.emplace(enumID, std::make_pair(className, enumName)); | |||
} | |||
body += formatv(R"( | |||
PyType_Modified(&e_type); | |||
mgb_assert(PyDict_SetItemString( | |||
py_type.tp_dict, "{0}", reinterpret_cast<PyObject*>(&e_type)) >= 0); | |||
)", | |||
enumName); | |||
body += "}\n"; | |||
return body; | |||
} | |||
static void gen_op_def_python_c_extension_single(raw_ostream &os, MgbOp& op, EnumContext& ctx) { | |||
auto className = op.getCppClassName(); | |||
std::string body; | |||
// generate PyType for enum class member | |||
for (auto&& i : op.getMgbAttributes()) { | |||
if (auto attr = llvm::dyn_cast<MgbEnumAttr>(&i.attr)) { | |||
if (attr->getEnumCombinedFlag()) { | |||
body += gen_op_def_python_c_extension_bit_combined_enum( | |||
os, ctx, attr, className); | |||
} else { | |||
body += gen_op_def_python_c_extension_enum(os, ctx, attr, | |||
className); | |||
} | |||
} | |||
} | |||
// generate getsetters | |||
std::vector<std::string> getsetters; | |||
for (auto &&i : op.getMgbAttributes()) { | |||
getsetters.push_back(formatv( | |||
"{{const_cast<char*>(\"{1}\"), py_get_generic({0}, {1}), py_set_generic({0}, {1}), const_cast<char*>(\"{1}\"), NULL},", | |||
className, i.name)); | |||
} | |||
// generate tp_init | |||
std::string initBody; | |||
if (!op.getMgbAttributes().empty()) { | |||
initBody += "static const char* kwlist[] = {"; | |||
std::vector<llvm::StringRef> attr_name_list; | |||
llvm::for_each(op.getMgbAttributes(), [&](auto&& attr) { | |||
attr_name_list.push_back(attr.name); | |||
}); | |||
attr_name_list.push_back("scope"); | |||
llvm::for_each(attr_name_list, [&](auto&& attr) { | |||
initBody += formatv("\"{0}\", ", attr); | |||
}); | |||
initBody += "NULL};\n"; | |||
initBody += " PyObject "; | |||
std::vector<std::string> attr_init; | |||
llvm::for_each(attr_name_list, [&](auto&& attr) { | |||
attr_init.push_back(formatv("*{0} = NULL", attr)); | |||
}); | |||
initBody += llvm::join(attr_init, ", ") + ";\n"; | |||
initBody += " if (!PyArg_ParseTupleAndKeywords(args, kwds, \"|"; | |||
// an extra slot created for name | |||
initBody += std::string(attr_name_list.size(), 'O'); | |||
initBody += "\", const_cast<char**>(kwlist)"; | |||
llvm::for_each(attr_name_list, [&](auto&& attr) { | |||
initBody += formatv(", &{0}", attr); | |||
}); | |||
initBody += "))\n"; | |||
initBody += " return -1;\n"; | |||
llvm::for_each(op.getMgbAttributes(), [&](auto&& attr) { | |||
initBody += formatv(R"( | |||
if ({1}) {{ | |||
try {{ | |||
reinterpret_cast<PyOp({0})*>(self)->inst().{1} = | |||
pyobj_convert_generic<decltype({0}::{1})>::from({1}); | |||
} CATCH_ALL(-1) | |||
} | |||
)", className, attr.name); | |||
}); | |||
initBody += formatv(R"( | |||
if (scope) {{ | |||
try {{ | |||
reinterpret_cast<PyOp(OpDef)*>(self)->op | |||
->set_scope(pyobj_convert_generic<std::string>::from(scope)); | |||
} CATCH_ALL(-1) | |||
} | |||
)", className); | |||
} | |||
initBody += "\n return 0;"; | |||
os << formatv(R"( | |||
PyOpDefBegin({0}) // {{ | |||
static PyGetSetDef py_getsetters[]; | |||
static int py_init(PyObject *self, PyObject *args, PyObject *kwds); | |||
// }; | |||
PyOpDefEnd({0}) | |||
PyGetSetDef PyOp({0})::py_getsetters[] = {{ | |||
{1} | |||
{{NULL} /* Sentinel */ | |||
}; | |||
int PyOp({0})::py_init(PyObject *self, PyObject *args, PyObject *kwds) {{ | |||
{2} | |||
} | |||
void _init_py_{0}(py::module m) {{ | |||
using py_op = PyOp({0}); | |||
auto& py_type = PyOpType({0}); | |||
py_type = {{PyVarObject_HEAD_INIT(NULL, 0)}; | |||
py_type.tp_name = "megengine.core._imperative_rt.ops.{0}"; | |||
py_type.tp_basicsize = sizeof(PyOp({0})); | |||
py_type.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE; | |||
py_type.tp_doc = "{0}"; | |||
py_type.tp_base = &PyOpType(OpDef); | |||
py_type.tp_dealloc = py_dealloc_generic<py_op>; | |||
py_type.tp_new = py_new_generic<py_op>; | |||
py_type.tp_init = py_op::py_init; | |||
py_type.tp_getset = py_op::py_getsetters; | |||
mgb_assert(PyType_Ready(&py_type) >= 0); | |||
{3} | |||
PyType_Modified(&py_type); | |||
m.add_object("{0}", reinterpret_cast<PyObject*>(&py_type)); | |||
mgb_assert(PyOp(OpDef)::ctype2pytype.emplace({0}::typeinfo(), &py_type).second); | |||
} | |||
)", | |||
op.getCppClassName(), llvm::join(getsetters, "\n "), initBody, body); | |||
} | |||
static void for_each_operator(raw_ostream &os, RecordKeeper &keeper, | |||
std::function<void(raw_ostream&, MgbOp&)> callback) { | |||
auto op_base_class = keeper.getClass("Op"); | |||
ASSERT(op_base_class, "could not find base class Op"); | |||
for (auto&& i: keeper.getDefs()) { | |||
auto&& r = i.second; | |||
if (r->isSubClassOf(op_base_class)) { | |||
auto op = mlir::tblgen::Operator(r.get()); | |||
if (op.getDialectName().str() == "mgb") { | |||
std::cerr << "\033[34;15m" << "Generating " << r->getName().str() << "\033[0m" << std::endl; | |||
callback(os, llvm::cast<MgbOp>(op)); | |||
} | |||
} | |||
} | |||
} | |||
static bool gen_op_def_c_header(raw_ostream &os, RecordKeeper &keeper) { | |||
for_each_operator(os, keeper, gen_op_def_c_header_single); | |||
for_each_operator(os, keeper, gen_to_string_trait_for_enum); | |||
return false; | |||
} | |||
static bool gen_op_def_c_body(raw_ostream &os, RecordKeeper &keeper) { | |||
for_each_operator(os, keeper, gen_op_def_c_body_single); | |||
return false; | |||
} | |||
static bool gen_op_def_pybind11(raw_ostream &os, RecordKeeper &keeper) { | |||
EnumContext ctx; | |||
using namespace std::placeholders; | |||
for_each_operator(os, keeper, | |||
std::bind(gen_op_def_pybind11_single, _1, _2, std::ref(ctx))); | |||
return false; | |||
} | |||
static bool gen_op_def_python_c_extension(raw_ostream &os, RecordKeeper &keeper) { | |||
EnumContext ctx; | |||
using namespace std::placeholders; | |||
for_each_operator(os, keeper, | |||
std::bind(gen_op_def_python_c_extension_single, _1, _2, std::ref(ctx))); | |||
os << "#define INIT_ALL_OP(m)"; | |||
for_each_operator(os, keeper, [&](raw_ostream& os, MgbOp& op) { | |||
os << formatv(" \\\n _init_py_{0}(m);", op.getCppClassName()); | |||
}); | |||
os << "\n"; | |||
return false; | |||
} | |||
using namespace mlir::tblgen; | |||
int main(int argc, char **argv) { | |||
llvm::InitLLVM y(argc, argv); | |||
@@ -0,0 +1,40 @@ | |||
/** | |||
* \file imperative/tablegen/emitter.h | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#pragma once | |||
#include <unordered_map> | |||
#include <stdexcept> | |||
#include "llvm/ADT/StringRef.h" | |||
#include "llvm/Support/raw_ostream.h" | |||
namespace mlir::tblgen { | |||
struct Environment { | |||
std::unordered_map<unsigned int, std::pair<llvm::StringRef, llvm::StringRef>> enumAlias; | |||
}; | |||
struct EmitterBase { | |||
EmitterBase(raw_ostream& os_): os(os_) {} | |||
EmitterBase(raw_ostream& os_, Environment& env): os(os_), env_p(&env) {} | |||
protected: | |||
void newline() { os << "\n"; } | |||
Environment& env() { | |||
if (env_p) { | |||
return *env_p; | |||
} | |||
throw std::runtime_error("access global environment via non-environment emitter"); | |||
} | |||
raw_ostream& os; | |||
Environment* env_p = nullptr; | |||
}; | |||
} // namespace mlir::tblgen |
@@ -1,3 +1,16 @@ | |||
/** | |||
* \file imperative/tablegen/helper.h | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#pragma once | |||
#include <iostream> | |||
#include <string> | |||
#include <vector> | |||
@@ -278,5 +291,28 @@ public: | |||
} | |||
}; | |||
using MgbAttrWrapper = mlir::tblgen::MgbAttrWrapperBase; | |||
using MgbEnumAttr = mlir::tblgen::MgbEnumAttrMixin; | |||
using MgbHashableAttr = mlir::tblgen::MgbHashableAttrMixin; | |||
using MgbAliasAttr = mlir::tblgen::MgbAliasAttrMixin; | |||
using MgbOp = mlir::tblgen::MgbOpBase; | |||
using MgbHashableOp = mlir::tblgen::MgbHashableOpMixin; | |||
static inline void foreach_operator(llvm::RecordKeeper &keeper, | |||
std::function<void(MgbOp&)> callback) { | |||
auto op_base_class = keeper.getClass("Op"); | |||
ASSERT(op_base_class, "could not find base class Op"); | |||
for (auto&& i: keeper.getDefs()) { | |||
auto&& r = i.second; | |||
if (r->isSubClassOf(op_base_class)) { | |||
auto op = mlir::tblgen::Operator(r.get()); | |||
if (op.getDialectName().str() == "mgb") { | |||
std::cerr << "\033[34;15m" << "Generating " << r->getName().str() << "\033[0m" << std::endl; | |||
callback(llvm::cast<MgbOp>(op)); | |||
} | |||
} | |||
} | |||
} | |||
} // namespace tblgen | |||
} // namespace mlir |
@@ -0,0 +1,309 @@ | |||
/** | |||
* \file imperative/tablegen/targets/cpp_class.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#include "./cpp_class.h" | |||
#include "../emitter.h" | |||
namespace mlir::tblgen { | |||
namespace { | |||
llvm::StringRef attr_to_ctype(const mlir::tblgen::Attribute& attr_) { | |||
// Note: we have already registered the corresponding attr wrappers | |||
// for following basic ctypes so we needn't handle them here | |||
/* auto&& attr_type_name = attr.getAttrDefName(); | |||
if (attr_type_name == "UI32Attr") { | |||
return "uint32_t"; | |||
} | |||
if (attr_type_name == "UI64Attr") { | |||
return "uint64_t"; | |||
} | |||
if (attr_type_name == "I32Attr") { | |||
return "int32_t"; | |||
} | |||
if (attr_type_name == "F32Attr") { | |||
return "float"; | |||
} | |||
if (attr_type_name == "F64Attr") { | |||
return "double"; | |||
} | |||
if (attr_type_name == "StrAttr") { | |||
return "std::string"; | |||
} | |||
if (attr_type_name == "BoolAttr") { | |||
return "bool"; | |||
}*/ | |||
auto&& attr = llvm::cast<MgbAttrWrapper>(attr_); | |||
if (auto e = llvm::dyn_cast<MgbEnumAttr>(&attr)) { | |||
return e->getEnumName(); | |||
} | |||
return attr.getUnderlyingType(); | |||
} | |||
class OpDefEmitter final: public EmitterBase { | |||
public: | |||
OpDefEmitter(MgbOp& op_, raw_ostream& os_): | |||
EmitterBase(os_), op(op_) {} | |||
void emit_header(); | |||
void emit_tpl_spl(); | |||
void emit_body(); | |||
private: | |||
MgbOp& op; | |||
}; | |||
void OpDefEmitter::emit_header() { | |||
os << formatv( | |||
"class {0} : public OpDefImplBase<{0}> {{\n" | |||
" MGB_DYN_TYPE_OBJ_FINAL_DECL;\n\n" | |||
"public:\n", | |||
op.getCppClassName() | |||
); | |||
// handle enum alias | |||
for (auto &&i : op.getMgbAttributes()) { | |||
if (auto attr = llvm::dyn_cast<MgbEnumAttr>(&i.attr)) { | |||
os << formatv( | |||
" using {0} = {1};\n", | |||
attr->getEnumName(), attr->getUnderlyingType() | |||
); | |||
} | |||
} | |||
for (auto &&i : op.getMgbAttributes()) { | |||
auto defaultValue = i.attr.getDefaultValue().str(); | |||
if (!defaultValue.empty()) { | |||
defaultValue = formatv(" = {0}", defaultValue); | |||
} | |||
os << formatv( | |||
" {0} {1}{2};\n", | |||
attr_to_ctype(i.attr), i.name, defaultValue | |||
); | |||
} | |||
auto gen_ctor = [&](auto&& paramList, auto&& memInitList, auto&& body) { | |||
os << formatv( | |||
" {0}({1}){2}{3}\n", | |||
op.getCppClassName(), paramList, memInitList, body | |||
); | |||
}; | |||
gen_ctor("", "", " = default;"); | |||
if (!op.getMgbAttributes().empty()) { | |||
std::vector<std::string> paramList, initList; | |||
for (auto &&i : op.getMgbAttributes()) { | |||
paramList.push_back(formatv( | |||
"{0} {1}_", attr_to_ctype(i.attr), i.name | |||
)); | |||
initList.push_back(formatv( | |||
"{0}({0}_)", i.name | |||
)); | |||
} | |||
paramList.push_back("std::string scope_ = {}"); | |||
gen_ctor(llvm::join(paramList, ", "), | |||
": " + llvm::join(initList, ", "), | |||
" { set_scope(scope_); }"); | |||
} | |||
auto packedParams = op.getPackedParams(); | |||
if (!packedParams.empty()) { | |||
std::vector<std::string> paramList, initList; | |||
for (auto &&p : packedParams) { | |||
auto&& paramFields = p.getFields(); | |||
auto&& paramType = p.getFullName(); | |||
auto&& paramName = formatv("packed_param_{0}", paramList.size()); | |||
paramList.push_back( | |||
paramFields.empty() ? paramType.str() | |||
: formatv("{0} {1}", paramType, paramName) | |||
); | |||
for (auto&& i : paramFields) { | |||
initList.push_back(formatv( | |||
"{0}({1}.{0})", i.name, paramName | |||
)); | |||
} | |||
} | |||
for (auto&& i : op.getExtraArguments()) { | |||
paramList.push_back(formatv( | |||
"{0} {1}_", attr_to_ctype(i.attr), i.name | |||
)); | |||
initList.push_back(formatv( | |||
"{0}({0}_)", i.name | |||
)); | |||
} | |||
gen_ctor(llvm::join(paramList, ", "), | |||
initList.empty() ? "" : ": " + llvm::join(initList, ", "), | |||
" {}"); | |||
} | |||
if (!packedParams.empty()) { | |||
for (auto&& p : packedParams) { | |||
auto accessor = p.getAccessor(); | |||
if (!accessor.empty()) { | |||
os << formatv( | |||
" {0} {1}() const {{\n", | |||
p.getFullName(), accessor | |||
); | |||
std::vector<llvm::StringRef> fields; | |||
for (auto&& i : p.getFields()) { | |||
fields.push_back(i.name); | |||
} | |||
os << formatv( | |||
" return {{{0}};\n", | |||
llvm::join(fields, ", ") | |||
); | |||
os << " }\n"; | |||
} | |||
} | |||
} | |||
if (auto decl = op.getExtraOpdefDecl()) { | |||
os << decl.getValue(); | |||
} | |||
os << formatv( | |||
"};\n\n" | |||
); | |||
} | |||
void OpDefEmitter::emit_tpl_spl() { | |||
for (auto &&i : op.getMgbAttributes()) { | |||
if (auto attr = llvm::dyn_cast<MgbEnumAttr>(&i.attr)) { | |||
if (attr->supportToString()) { | |||
std::vector<std::string> case_body; | |||
std::string ename = formatv("{0}::{1}", | |||
op.getCppClassName(), attr->getEnumName()); | |||
llvm::for_each(attr->getEnumMembers(), [&](auto&& v){ | |||
case_body.push_back(formatv( | |||
"case {0}::{1}: return \"{1}\";", ename, v)); | |||
}); | |||
os << formatv(R"( | |||
template <> | |||
struct ToStringTrait<{0}> { | |||
std::string operator()({0} e) const { | |||
switch (e) { | |||
{1} | |||
default: | |||
return "{0}::Unknown"; | |||
} | |||
} | |||
}; | |||
)", ename, llvm::join(case_body, "\n")); | |||
} | |||
} | |||
} | |||
} | |||
void OpDefEmitter::emit_body() { | |||
auto&& className = op.getCppClassName(); | |||
os << formatv( | |||
"MGB_DYN_TYPE_OBJ_FINAL_IMPL({0});\n\n", className | |||
); | |||
auto formatMethImpl = [&](auto&& meth) { | |||
return formatv( | |||
"{0}_{1}_impl", className, meth | |||
); | |||
}; | |||
std::vector<std::string> methods; | |||
if (auto hashable = llvm::dyn_cast<MgbHashableOp>(&op)) { | |||
os << "namespace {\n"; | |||
// generate hash() | |||
mlir::tblgen::FmtContext ctx; | |||
os << formatv( | |||
"size_t {0}(const OpDef& def_) {{\n", | |||
formatMethImpl("hash") | |||
); | |||
os << formatv( | |||
" auto&& op_ = def_.cast_final_safe<{0}>();\n" | |||
" static_cast<void>(op_);\n", | |||
className | |||
); | |||
ctx.withSelf("op_"); | |||
os << mlir::tblgen::tgfmt(hashable->getHashFunctionTemplate(), &ctx); | |||
os << "}\n"; | |||
// generate is_same_st() | |||
os << formatv( | |||
"bool {0}(const OpDef& lhs_, const OpDef& rhs_) {{\n", | |||
formatMethImpl("is_same_st") | |||
); | |||
os << formatv( | |||
" auto &&a_ = lhs_.cast_final_safe<{0}>(),\n" | |||
" &&b_ = rhs_.cast_final_safe<{0}>();\n" | |||
" static_cast<void>(a_);\n" | |||
" static_cast<void>(b_);\n", | |||
className | |||
); | |||
os << mlir::tblgen::tgfmt(hashable->getCmpFunctionTemplate(), &ctx, "a_", "b_"); | |||
os << "}\n"; | |||
// generate props() | |||
os << formatv( | |||
"std::vector<std::pair<const char*, std::string>> {0}(const OpDef& def_) {{\n", | |||
formatMethImpl("props") | |||
); | |||
os << formatv( | |||
" auto&& op_ = def_.cast_final_safe<{0}>();\n" | |||
" static_cast<void>(op_);\n", | |||
className | |||
); | |||
ctx.withSelf("op_"); | |||
os << mlir::tblgen::tgfmt(hashable->getPropsFunctionTemplate(), &ctx); | |||
os << "}\n"; | |||
// generate make_name() | |||
os << formatv( | |||
"std::string {0}(const OpDef& def_) {{\n", formatMethImpl("make_name") | |||
); | |||
os << formatv( | |||
" auto&& op_ = def_.cast_final_safe<{0}>();\n" | |||
" static_cast<void>(op_);\n", | |||
className | |||
); | |||
ctx.withSelf("op_"); | |||
os << mlir::tblgen::tgfmt(op.getNameFunctionTemplate(), &ctx); | |||
os << "}\n"; | |||
os << "} // anonymous namespace\n"; | |||
methods.push_back("hash"); | |||
methods.push_back("is_same_st"); | |||
methods.push_back("props"); | |||
methods.push_back("make_name"); | |||
} | |||
if (!methods.empty()) { | |||
os << formatv( | |||
"OP_TRAIT_REG({0}, {0})", op.getCppClassName() | |||
); | |||
for (auto&& i : methods) { | |||
os << formatv( | |||
"\n .{0}({1})", i, formatMethImpl(i) | |||
); | |||
} | |||
os << ";\n\n"; | |||
} | |||
} | |||
} // namespace | |||
bool gen_op_def_c_header(raw_ostream &os, llvm::RecordKeeper &keeper) { | |||
foreach_operator(keeper, [&](MgbOp& op) { | |||
OpDefEmitter emitter(op, os); | |||
emitter.emit_header(); | |||
emitter.emit_tpl_spl(); | |||
}); | |||
return false; | |||
} | |||
bool gen_op_def_c_body(raw_ostream &os, llvm::RecordKeeper &keeper) { | |||
foreach_operator(keeper, [&](MgbOp& op) { | |||
OpDefEmitter emitter(op, os); | |||
emitter.emit_body(); | |||
}); | |||
return false; | |||
} | |||
} // namespace mlir::tblgen |
@@ -0,0 +1,21 @@ | |||
/** | |||
* \file imperative/tablegen/targets/cpp_class.h | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#pragma once | |||
#include "../helper.h" | |||
namespace mlir::tblgen { | |||
bool gen_op_def_c_header(raw_ostream &os, llvm::RecordKeeper &keeper); | |||
bool gen_op_def_c_body(raw_ostream &os, llvm::RecordKeeper &keeper); | |||
} // namespace mlir::tblgen |
@@ -0,0 +1,142 @@ | |||
/** | |||
* \file imperative/tablegen/targets/pybind11.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#include "./pybind11.h" | |||
#include "../emitter.h" | |||
namespace mlir::tblgen { | |||
namespace { | |||
class OpDefEmitter final: public EmitterBase { | |||
public: | |||
OpDefEmitter(MgbOp& op_, raw_ostream& os_, Environment& env_): | |||
EmitterBase(os_, env_), op(op_) {} | |||
void emit(); | |||
private: | |||
MgbOp& op; | |||
}; | |||
void OpDefEmitter::emit() { | |||
auto className = op.getCppClassName(); | |||
os << formatv( | |||
"py::class_<{0}, std::shared_ptr<{0}>, OpDef> {0}Inst(m, \"{0}\");\n\n", | |||
className | |||
); | |||
for (auto&& i : op.getMgbAttributes()) { | |||
if (auto attr = llvm::dyn_cast<MgbEnumAttr>(&i.attr)) { | |||
unsigned int enumID; | |||
if (auto alias = llvm::dyn_cast<MgbAliasAttr>(attr)) { | |||
auto&& aliasBase = alias->getAliasBase(); | |||
enumID = | |||
llvm::cast<MgbEnumAttr>(aliasBase) | |||
.getBaseRecord()->getID(); | |||
} else { | |||
enumID = attr->getBaseRecord()->getID(); | |||
} | |||
auto&& enumAlias = env().enumAlias; | |||
auto&& iter = enumAlias.find(enumID); | |||
if (iter == enumAlias.end()) { | |||
os << formatv( | |||
"py::enum_<{0}::{1}>({0}Inst, \"{1}\")", | |||
className, attr->getEnumName() | |||
); | |||
std::vector<std::string> body; | |||
for (auto&& i: attr->getEnumMembers()) { | |||
os << formatv( | |||
"\n .value(\"{2}\", {0}::{1}::{2})", | |||
className, attr->getEnumName(), i | |||
); | |||
body.push_back(formatv( | |||
"if (str == \"{2}\") return {0}::{1}::{2};", | |||
className, attr->getEnumName(), i | |||
)); | |||
} | |||
if (attr->getEnumCombinedFlag()) { | |||
//! define operator | | |||
os << formatv( | |||
"\n .def(\"__or__\", []({0}::{1} s0, {0}::{1} s1) {{ " | |||
"\n return static_cast<{0}::{1}>(uint32_t(s0) | uint32_t(s1));" | |||
"\n })", | |||
className, attr->getEnumName()); | |||
//! define operator & | |||
os << formatv( | |||
"\n .def(\"__and__\", []({0}::{1} s0, {0}::{1} s1) {{" | |||
"\n return static_cast<{0}::{1}>(uint32_t(s0) & uint32_t(s1));" | |||
"\n })", | |||
className, attr->getEnumName()); | |||
} | |||
os << formatv( | |||
"\n .def(py::init([](const std::string& in) {" | |||
"\n auto&& str = normalize_enum(in);" | |||
"\n {0}" | |||
"\n throw py::cast_error(\"invalid enum value \" + in);" | |||
"\n }));\n", | |||
llvm::join(body, "\n ") | |||
); | |||
os << formatv( | |||
"py::implicitly_convertible<std::string, {0}::{1}>();\n\n", | |||
className, attr->getEnumName() | |||
); | |||
enumAlias.emplace(enumID, | |||
std::make_pair(className, attr->getEnumName())); | |||
} else { | |||
os << formatv( | |||
"{0}Inst.attr(\"{1}\") = {2}Inst.attr(\"{3}\");\n\n", | |||
className, attr->getEnumName(), | |||
iter->second.first, iter->second.second | |||
); | |||
} | |||
} | |||
} | |||
// generate op class binding | |||
os << formatv("{0}Inst", className); | |||
bool hasDefaultCtor = op.getMgbAttributes().empty(); | |||
if (!hasDefaultCtor) { | |||
os << "\n .def(py::init<"; | |||
std::vector<llvm::StringRef> targs; | |||
for (auto &&i : op.getMgbAttributes()) { | |||
targs.push_back(i.attr.getReturnType()); | |||
} | |||
os << llvm::join(targs, ", "); | |||
os << ", std::string>()"; | |||
for (auto &&i : op.getMgbAttributes()) { | |||
os << formatv(", py::arg(\"{0}\")", i.name); | |||
auto defaultValue = i.attr.getDefaultValue(); | |||
if (!defaultValue.empty()) { | |||
os << formatv(" = {0}", defaultValue); | |||
} else { | |||
hasDefaultCtor = true; | |||
} | |||
} | |||
os << ", py::arg(\"scope\") = {})"; | |||
} | |||
if (hasDefaultCtor) { | |||
os << "\n .def(py::init<>())"; | |||
} | |||
for (auto &&i : op.getMgbAttributes()) { | |||
os << formatv( | |||
"\n .def_readwrite(\"{0}\", &{1}::{0})", | |||
i.name, className | |||
); | |||
} | |||
os << ";\n\n"; | |||
} | |||
} // namespace | |||
bool gen_op_def_pybind11(raw_ostream &os, llvm::RecordKeeper &keeper) { | |||
Environment env; | |||
using namespace std::placeholders; | |||
foreach_operator(keeper, [&](MgbOp& op) { | |||
OpDefEmitter(op, os, env).emit(); | |||
}); | |||
return false; | |||
} | |||
} // namespace mlir::tblgen |
@@ -0,0 +1,19 @@ | |||
/** | |||
* \file imperative/tablegen/targets/pybind11.h | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#pragma once | |||
#include "../helper.h" | |||
namespace mlir::tblgen { | |||
bool gen_op_def_pybind11(raw_ostream &os, llvm::RecordKeeper &keeper); | |||
} // namespace mlir::tblgen |
@@ -0,0 +1,314 @@ | |||
/** | |||
* \file imperative/tablegen/targets/python_c_extension.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#include "python_c_extension.h" | |||
#include "../emitter.h" | |||
namespace mlir::tblgen { | |||
namespace { | |||
struct Initproc { | |||
std::string func; | |||
Initproc(std::string&& s): func(std::move(s)) {} | |||
std::string operator()(std::string argument) { | |||
return formatv("{0}({1})", func, argument); | |||
} | |||
}; | |||
class OpDefEmitter: public EmitterBase { | |||
public: | |||
OpDefEmitter(MgbOp& op_, raw_ostream& os_, Environment& env_): | |||
EmitterBase(os_, env_), op(op_) { | |||
ctx.withSelf(op.getCppClassName()); | |||
} | |||
Initproc emit(); | |||
private: | |||
void emit_class(); | |||
void emit_py_init(); | |||
void emit_py_getsetters(); | |||
Initproc emit_initproc(); | |||
MgbOp& op; | |||
std::vector<Initproc> subclasses; | |||
mlir::tblgen::FmtContext ctx; | |||
}; | |||
class EnumAttrEmitter: public EmitterBase { | |||
public: | |||
EnumAttrEmitter(llvm::StringRef parent, MgbEnumAttr* attr_, raw_ostream& os_, Environment& env_): | |||
EmitterBase(os_, env_), attr(attr_) { | |||
unsigned int enumID; | |||
if (auto alias = llvm::dyn_cast<MgbAliasAttr>(attr)) { | |||
auto&& aliasBase = alias->getAliasBase(); | |||
enumID = llvm::cast<MgbEnumAttr>(aliasBase).getBaseRecord()->getID(); | |||
} else { | |||
enumID = attr->getBaseRecord()->getID(); | |||
} | |||
ctx.addSubst("enumTpl", attr->getEnumCombinedFlag() ? "BitCombinedEnumWrapper" : "EnumWrapper"); | |||
ctx.addSubst("opClass", parent); | |||
ctx.addSubst("enumClass", attr->getEnumName()); | |||
firstOccur = env().enumAlias.emplace(enumID, std::make_pair(parent, attr->getEnumName())).second; | |||
} | |||
Initproc emit(); | |||
protected: | |||
void emit_tpl_spl(); | |||
Initproc emit_initproc(); | |||
MgbEnumAttr* attr; | |||
bool firstOccur; | |||
mlir::tblgen::FmtContext ctx; | |||
}; | |||
Initproc EnumAttrEmitter::emit() { | |||
emit_tpl_spl(); | |||
return emit_initproc(); | |||
} | |||
void EnumAttrEmitter::emit_tpl_spl() { | |||
if (!firstOccur) return; | |||
os << tgfmt( | |||
"template<> PyTypeObject $enumTpl<$opClass::$enumClass>::type={};\n", | |||
&ctx); | |||
os << tgfmt( | |||
"template<> const char* $enumTpl<$opClass::$enumClass>::name = " | |||
"\"$opClass.$enumClass\";\n", | |||
&ctx); | |||
if (attr->getEnumCombinedFlag()) { | |||
os << tgfmt( | |||
"template<> PyNumberMethods " | |||
"$enumTpl<$opClass::$enumClass>::number_methods={};\n", | |||
&ctx); | |||
os << tgfmt(R"( | |||
template<> struct EnumTrait<$opClass::$enumClass> { | |||
static constexpr bool is_bit_combined = true; | |||
static constexpr std::underlying_type_t<$opClass::$enumClass> max = (1llu << $0) - 1; | |||
}; | |||
)", &ctx, attr->getEnumMembers().size()); | |||
} | |||
auto str2type = [&](auto&& i) -> std::string { | |||
return tgfmt("{normalize_enum(\"$0\"), $opClass::$enumClass::$0}", &ctx, i); | |||
}; | |||
os << tgfmt(R"( | |||
template<> std::unordered_map<std::string, $opClass::$enumClass> | |||
$enumTpl<$opClass::$enumClass>::str2type = {$0}; | |||
)", &ctx, llvm::join(llvm::map_range(attr->getEnumMembers(), str2type), ", ")); | |||
auto type2str = [&](auto&& i) -> std::string { | |||
return tgfmt("{$opClass::$enumClass::$0, normalize_enum(\"$0\")}", &ctx, i); | |||
}; | |||
os << tgfmt(R"( | |||
template<> std::unordered_map<$opClass::$enumClass, std::string> | |||
$enumTpl<$opClass::$enumClass>::type2str = {$0}; | |||
)", &ctx, llvm::join(llvm::map_range(attr->getEnumMembers(), type2str), ", ")); | |||
} | |||
Initproc EnumAttrEmitter::emit_initproc() { | |||
std::string initproc = formatv("_init_py_{0}_{1}", | |||
ctx.getSubstFor("opClass"), ctx.getSubstFor("enumClass")); | |||
os << tgfmt(R"( | |||
void $0(PyTypeObject& py_type) { | |||
auto& e_type = $enumTpl<$opClass::$enumClass>::type; | |||
)", &ctx, initproc); | |||
if (firstOccur) { | |||
os << tgfmt(R"( | |||
e_type = {PyVarObject_HEAD_INIT(NULL, 0)}; | |||
e_type.tp_name = "megengine.core._imperative_rt.ops.$opClass.$enumClass"; | |||
e_type.tp_basicsize = sizeof($enumTpl<$opClass::$enumClass>); | |||
e_type.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE; | |||
e_type.tp_doc = "$opClass.$enumClass"; | |||
e_type.tp_base = &PyBaseObject_Type; | |||
e_type.tp_repr = $enumTpl<$opClass::$enumClass>::py_repr; | |||
e_type.tp_richcompare = $enumTpl<$opClass::$enumClass>::tp_richcompare; | |||
)", &ctx); | |||
if (attr->getEnumCombinedFlag()) { | |||
// only bit combined enum could new instance because bitwise operation, | |||
// others should always use singleton | |||
os << tgfmt(R"( | |||
e_type.tp_new = $enumTpl<$opClass::$enumClass>::py_new_combined_enum; | |||
auto& number_method = $enumTpl<$opClass::$enumClass>::number_methods; | |||
number_method.nb_or = $enumTpl<$opClass::$enumClass>::py_or; | |||
number_method.nb_and = $enumTpl<$opClass::$enumClass>::py_and; | |||
e_type.tp_as_number = &number_method; | |||
)", &ctx); | |||
} | |||
os << " mgb_assert(PyType_Ready(&e_type) >= 0);\n"; | |||
for (auto&& i : attr->getEnumMembers()) { | |||
os << tgfmt(R"({ | |||
PyObject* inst = e_type.tp_alloc(&e_type, 0); | |||
reinterpret_cast<$enumTpl<$opClass::$enumClass>*>(inst)->value = $opClass::$enumClass::$0; | |||
mgb_assert(PyDict_SetItemString(e_type.tp_dict, "$0", inst) >= 0); | |||
PyType_Modified(&e_type); | |||
})", &ctx, i); | |||
} | |||
} | |||
os << tgfmt(R"( | |||
mgb_assert(PyDict_SetItemString( | |||
py_type.tp_dict, "$enumClass", reinterpret_cast<PyObject*>(&e_type)) >= 0); | |||
)", &ctx); | |||
os << "}\n"; | |||
return initproc; | |||
} | |||
Initproc OpDefEmitter::emit() { | |||
for (auto&& i : op.getMgbAttributes()) { | |||
if (auto attr = llvm::dyn_cast<MgbEnumAttr>(&i.attr)) { | |||
subclasses.push_back(EnumAttrEmitter(op.getCppClassName(), attr, os, env()).emit()); | |||
} | |||
} | |||
emit_class(); | |||
emit_py_init(); | |||
emit_py_getsetters(); | |||
return emit_initproc(); | |||
} | |||
void OpDefEmitter::emit_class() { | |||
os << tgfmt(R"( | |||
PyOpDefBegin($_self) // { | |||
static PyGetSetDef py_getsetters[]; | |||
static int py_init(PyObject *self, PyObject *args, PyObject *kwds); | |||
// }; | |||
PyOpDefEnd($_self) | |||
)", &ctx); | |||
} | |||
void OpDefEmitter::emit_py_init() { | |||
std::string initBody; | |||
if (!op.getMgbAttributes().empty()) { | |||
initBody += "static const char* kwlist[] = {"; | |||
std::vector<llvm::StringRef> attr_name_list; | |||
llvm::for_each(op.getMgbAttributes(), [&](auto&& attr) { | |||
attr_name_list.push_back(attr.name); | |||
}); | |||
attr_name_list.push_back("scope"); | |||
llvm::for_each(attr_name_list, [&](auto&& attr) { | |||
initBody += formatv("\"{0}\", ", attr); | |||
}); | |||
initBody += "NULL};\n"; | |||
initBody += " PyObject "; | |||
auto initializer = [&](auto&& attr) -> std::string { | |||
return formatv("*{0} = NULL", attr); | |||
}; | |||
initBody += llvm::join(llvm::map_range(attr_name_list, initializer), ", ") + ";\n"; | |||
initBody += " if (!PyArg_ParseTupleAndKeywords(args, kwds, \"|"; | |||
// an extra slot created for name | |||
initBody += std::string(attr_name_list.size(), 'O'); | |||
initBody += "\", const_cast<char**>(kwlist)"; | |||
llvm::for_each(attr_name_list, [&](auto&& attr) { | |||
initBody += formatv(", &{0}", attr); | |||
}); | |||
initBody += "))\n"; | |||
initBody += " return -1;\n"; | |||
llvm::for_each(op.getMgbAttributes(), [&](auto&& attr) { | |||
initBody += tgfmt(R"( | |||
if ($0) { | |||
try { | |||
reinterpret_cast<PyOp($_self)*>(self)->inst().$0 = | |||
pyobj_convert_generic<decltype($_self::$0)>::from($0); | |||
} CATCH_ALL(-1) | |||
} | |||
)", &ctx, attr.name); | |||
}); | |||
initBody += tgfmt(R"( | |||
if (scope) { | |||
try { | |||
reinterpret_cast<PyOp(OpDef)*>(self)->op | |||
->set_scope(pyobj_convert_generic<std::string>::from(scope)); | |||
} CATCH_ALL(-1) | |||
} | |||
)", &ctx); | |||
} | |||
initBody += "\n return 0;"; | |||
os << tgfmt(R"( | |||
int PyOp($_self)::py_init(PyObject *self, PyObject *args, PyObject *kwds) { | |||
$0 | |||
} | |||
)", &ctx, initBody); | |||
} | |||
void OpDefEmitter::emit_py_getsetters() { | |||
auto f = [&](auto&& attr) -> std::string { | |||
return tgfmt( | |||
"{const_cast<char*>(\"$0\"), py_get_generic($_self, $0), py_set_generic($_self, $0), const_cast<char*>(\"$0\"), NULL},", | |||
&ctx, attr.name); | |||
}; | |||
os << tgfmt(R"( | |||
PyGetSetDef PyOp($_self)::py_getsetters[] = { | |||
$0 | |||
{NULL} /* Sentinel */ | |||
}; | |||
)", &ctx, llvm::join(llvm::map_range(op.getMgbAttributes(), f), "\n ")); | |||
} | |||
Initproc OpDefEmitter::emit_initproc() { | |||
std::string initproc = formatv("_init_py_{0}", op.getCppClassName()); | |||
std::string subclass_init_call; | |||
for (auto&& i : subclasses) { | |||
subclass_init_call += formatv(" {0};\n", i("py_type")); | |||
} | |||
os << tgfmt(R"( | |||
void $0(py::module m) { | |||
using py_op = PyOp($_self); | |||
auto& py_type = PyOpType($_self); | |||
py_type = {PyVarObject_HEAD_INIT(NULL, 0)}; | |||
py_type.tp_name = "megengine.core._imperative_rt.ops.$_self"; | |||
py_type.tp_basicsize = sizeof(PyOp($_self)); | |||
py_type.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE; | |||
py_type.tp_doc = "$_self"; | |||
py_type.tp_base = &PyOpType(OpDef); | |||
py_type.tp_dealloc = py_dealloc_generic<py_op>; | |||
py_type.tp_new = py_new_generic<py_op>; | |||
py_type.tp_init = py_op::py_init; | |||
py_type.tp_getset = py_op::py_getsetters; | |||
mgb_assert(PyType_Ready(&py_type) >= 0); | |||
$1 | |||
PyType_Modified(&py_type); | |||
m.add_object("$_self", reinterpret_cast<PyObject*>(&py_type)); | |||
mgb_assert(PyOp(OpDef)::ctype2pytype.emplace($_self::typeinfo(), &py_type).second); | |||
} | |||
)", &ctx, initproc, subclass_init_call); | |||
return initproc; | |||
} | |||
} // namespace | |||
bool gen_op_def_python_c_extension(raw_ostream &os, llvm::RecordKeeper &keeper) { | |||
Environment env; | |||
using namespace std::placeholders; | |||
std::vector<Initproc> initprocs; | |||
foreach_operator(keeper, [&](MgbOp& op) { | |||
initprocs.emplace_back(OpDefEmitter(op, os, env).emit()); | |||
}); | |||
os << "#define INIT_ALL_OP(m)"; | |||
for(auto&& init : initprocs) { | |||
os << formatv(" \\\n {0};", init("m")); | |||
} | |||
os << "\n"; | |||
return false; | |||
} | |||
} // namespace mlir::tblgen |
@@ -0,0 +1,19 @@ | |||
/** | |||
* \file imperative/tablegen/targets/python_c_extension.h | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#pragma once | |||
#include "../helper.h" | |||
namespace mlir::tblgen { | |||
bool gen_op_def_python_c_extension(raw_ostream &os, llvm::RecordKeeper &keeper); | |||
} // namespace mlir::tblgen |
@@ -709,7 +709,7 @@ void run_test_st(Args &env) { | |||
strategy = S::PROFILE; | |||
} | |||
} else if (env.use_fast_run) { | |||
strategy = S::PROFILE | S::OPTMIZED; | |||
strategy = S::PROFILE | S::OPTIMIZED; | |||
} else if (env.reproducible) { | |||
strategy = S::HEURISTIC | S::REPRODUCIBLE; | |||
} | |||
@@ -365,14 +365,16 @@ namespace mgb { | |||
if (!m_free_task_block.empty()) { | |||
ret = std::move(m_free_task_block.back()); | |||
m_free_task_block.pop_back(); | |||
break; | |||
} else if (m_block_quota > 0) { | |||
ret = std::make_unique<TaskBlock>(); | |||
m_block_quota--; | |||
break; | |||
} else { | |||
m_cv.wait(m_mutex); | |||
continue; | |||
} | |||
} while (false); | |||
} while (true); | |||
ret->first_tid = m_new_block_first_tid; | |||
m_new_block_first_tid += BLOCK_SIZE; | |||
ret->prev = prev; | |||
@@ -12,8 +12,8 @@ | |||
#pragma once | |||
#define MGB_MAJOR 8 | |||
#define MGB_MINOR 9999 | |||
#define MGB_PATCH 0 | |||
#define MGB_MINOR 10 | |||
#define MGB_PATCH 1 | |||
//! whether it is development version | |||
#ifndef MGB_IS_DEV | |||
#define MGB_IS_DEV 0 | |||
@@ -1565,7 +1565,7 @@ std::unique_ptr<ConvertFormatPass> ConvertFormatPass::make_nhwcd4_converter() { | |||
if (new_inp[i]->shape()[1] % 4 != 0) { | |||
can_exec_cd4 = false; | |||
} | |||
//! cd4 elemwise with scaler is supported | |||
//! cd4 elemwise with scaler is unsupported | |||
} else if (!new_inp[i]->shape().is_scalar()) { | |||
can_exec_cd4 = false; | |||
} | |||
@@ -1627,6 +1627,7 @@ std::unique_ptr<ConvertFormatPass> ConvertFormatPass::make_nhwcd4_converter() { | |||
replace_func[opr::Broadcast::typeinfo()] = relayout_inp_to_chw; | |||
replace_func[opr::IncrSubtensor::typeinfo()] = relayout_inp_to_chw; | |||
replace_func[opr::AxisAddRemove::typeinfo()] = relayout_inp_to_chw; | |||
replace_func[opr::TypeCvt::typeinfo()] = replace_elemwise_opr; | |||
replace_func[opr::ResizeForward::typeinfo()] = replace_resize_opr; | |||
replace_func[opr::WarpPerspectiveForward::typeinfo()] = | |||
replace_warp_perspective_opr; | |||
@@ -1265,6 +1265,55 @@ TEST(TestGoptInference, ConvertFormatNHWCD4Elemwise) { | |||
MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3); | |||
} | |||
TEST(TestGoptInference, ConvertFormatNHWCD4TypeCvt) { | |||
NaiveMegDNNHandleScope naive_megdnn_handle; | |||
HostTensorGenerator<> gen; | |||
auto cn = CompNode::load("cpu0"); | |||
auto graph = ComputingGraph::make(); | |||
graph->options().graph_opt_level = 0; | |||
auto mkcvar = [&](const char* name, const TensorShape& shp) { | |||
return opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)) | |||
.rename(name); | |||
}; | |||
auto host_x = gen({8, 8, 8, 8}, cn); | |||
auto x = opr::Host2DeviceCopy::make(*graph, host_x); | |||
opr::Convolution::Param param; | |||
param.pad_h = param.pad_w = 0; | |||
auto w1 = mkcvar("w1", {8, 8, 3, 3}), | |||
conv1 = opr::Convolution::make(x, w1, param), | |||
tcvt1 = opr::TypeCvt::make(conv1, dtype::Float16()); | |||
auto w2 = mkcvar("w2", {8, 8, 3, 3}), | |||
conv2 = opr::Convolution::make(x, w2, param), | |||
tcvt2 = opr::TypeCvt::make(conv2, dtype::Float16()); | |||
auto y = opr::Elemwise::make({tcvt1, tcvt2}, opr::Elemwise::Param::Mode::ADD); | |||
SymbolVar y_opt; | |||
auto options = gopt::OptimizeForInferenceOptions{}; | |||
options.enable_nhwcd4(); | |||
unpack_vector(gopt::optimize_for_inference({y}, options), y_opt); | |||
ASSERT_EQ(opr::Convolution::Param::Format::NHWCD4, | |||
find_opr<opr::Convolution>(y_opt).param().format); | |||
graph->compile({{y_opt, {}}}) | |||
->to_json() | |||
->writeto_fpath(output_file( | |||
"TestGoptInference.ConvertFormatNHWCD4TypeCvt.json")); | |||
HostTensorND host_y_opt, host_y; | |||
auto func = graph->compile({make_callback_copy(y, host_y), | |||
make_callback_copy(y_opt, host_y_opt)}); | |||
func->execute(); | |||
MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt); | |||
*host_x = *gen({8, 8, 16, 16}, cn); | |||
func->execute(); | |||
MGB_ASSERT_TENSOR_EQ(host_y, host_y_opt); | |||
} | |||
TEST(TestGoptInference, ConvertFormatNHWCD4LOCAL) { | |||
// hwcd4 is only supported in naive handle | |||
NaiveMegDNNHandleScope naive_megdnn_handle; | |||
@@ -1707,8 +1756,8 @@ TEST(TestGoptInference, FastProfileCache) { | |||
using S = opr::Convolution::ExecutionPolicy::Strategy; | |||
ASSERT_EQ(S::HEURISTIC, conv.execution_policy_transient().strategy); | |||
gopt::modify_opr_algo_strategy_inplace({z + 2.3f}, | |||
S::PROFILE | S::OPTMIZED); | |||
ASSERT_EQ(S::PROFILE | S::OPTMIZED, conv.execution_policy().strategy); | |||
S::PROFILE | S::OPTIMIZED); | |||
ASSERT_EQ(S::PROFILE | S::OPTIMIZED, conv.execution_policy().strategy); | |||
} | |||
TEST(TestGoptInference, AlgoWorkspaceLimit) { | |||
@@ -6,7 +6,7 @@ decl_opr('Convolution', | |||
'convolution kernel in ' | |||
'(out channel, in channel, kern row, kern col) format')], | |||
params=[('param', 'ConvolutionV0'), | |||
('execution_polity', 'ExecutionPolicy')], | |||
('execution_polity', 'ExecutionPolicyV0')], | |||
desc='batched convolution on channeled 2D images') | |||
decl_opr('Convolution', | |||
@@ -28,7 +28,7 @@ decl_opr('ConvolutionBackwardData', | |||
'convolution kernel in ' | |||
'(out channel, in channel, kern row, kern col) format')], | |||
params=[('param', 'ConvolutionV0'), | |||
('execution_polity', 'ExecutionPolicy')], | |||
('execution_polity', 'ExecutionPolicyV0')], | |||
body=[ | |||
'a, b = all_inputs', | |||
'all_inputs = [b, a]' | |||
@@ -201,7 +201,7 @@ decl_opr('ConvBiasForward', | |||
Doc('bias', 'bias'), | |||
], | |||
params=[('param', 'ConvBiasV1'), | |||
('execution_policy', 'ExecutionPolicy')], | |||
('execution_policy', 'ExecutionPolicyV0')], | |||
desc=('activation(convolution(src, filter) + bias) with specified ' | |||
'dtype'), | |||
has_out_dtype=True) | |||
@@ -283,7 +283,7 @@ std::vector<megdnn::Algorithm::SearchItem> flatten_search_space( | |||
static bool algo_attribute_match_strategy(AlgoAttribute attribute, | |||
ExecutionStrategy selected_strategy) { | |||
bool ret = true; | |||
if (selected_strategy & ExecutionStrategy::OPTMIZED) { | |||
if (selected_strategy & ExecutionStrategy::OPTIMIZED) { | |||
ret &= (!static_cast<bool>(AlgoAttribute::NAIVE & attribute)); | |||
} else if (selected_strategy & ExecutionStrategy::REPRODUCIBLE) { | |||
ret &= static_cast<bool>(AlgoAttribute::REPRODUCIBLE & attribute); | |||
@@ -357,7 +357,7 @@ TEST(TestOprDNN, ConvBiasExePolicy) { | |||
#if MGB_ENABLE_FASTRUN | |||
for (auto strategy : | |||
SmallVector<S>{S::PROFILE, S::HEURISTIC, S::PROFILE | S::REPRODUCIBLE, | |||
S::PROFILE | S::HEURISTIC, S::PROFILE | S::OPTMIZED}) { | |||
S::PROFILE | S::HEURISTIC, S::PROFILE | S::OPTIMIZED}) { | |||
#else | |||
for (auto strategy : | |||
SmallVector<S>{S : HEURISTIC, S::PROFILE | S::HEURISTIC}) { | |||
@@ -444,7 +444,7 @@ TEST(TestOprDNN, ConvolutionExePolicy) { | |||
#if MGB_ENABLE_FASTRUN | |||
for (auto strategy : | |||
SmallVector<S>{S::PROFILE, S::HEURISTIC, S::PROFILE | S::REPRODUCIBLE, | |||
S::PROFILE | S::HEURISTIC, S::PROFILE | S::OPTMIZED}) { | |||
S::PROFILE | S::HEURISTIC, S::PROFILE | S::OPTIMIZED}) { | |||
#else | |||
for (auto strategy : | |||
SmallVector<S>{S : HEURISTIC, S::PROFILE | S::HEURISTIC}) { | |||
@@ -1717,7 +1717,7 @@ TEST(TestOprDNN, LocalShareForwardExecPolicy) { | |||
#if MGB_ENABLE_FASTRUN | |||
for (auto strategy : | |||
SmallVector<S>{S::PROFILE, S::HEURISTIC, S::PROFILE | S::REPRODUCIBLE, | |||
S::PROFILE | S::HEURISTIC, S::PROFILE | S::OPTMIZED}) { | |||
S::PROFILE | S::HEURISTIC, S::PROFILE | S::OPTIMIZED}) { | |||
#else | |||
for (auto strategy : | |||
SmallVector<S>{S : HEURISTIC, S::PROFILE | S::HEURISTIC}) { | |||
@@ -1828,7 +1828,7 @@ TEST(TestOprDNN, DeformableConvForward) { | |||
#if MGB_ENABLE_FASTRUN | |||
for (auto strategy : | |||
SmallVector<S>{S::PROFILE, S::HEURISTIC, S::PROFILE | S::REPRODUCIBLE, | |||
S::PROFILE | S::HEURISTIC, S::PROFILE | S::OPTMIZED}) { | |||
S::PROFILE | S::HEURISTIC, S::PROFILE | S::OPTIMIZED}) { | |||
#else | |||
for (auto strategy : | |||
SmallVector<S>{S : HEURISTIC, S::PROFILE | S::HEURISTIC}) { | |||
@@ -1997,7 +1997,7 @@ TEST(TestOprDNN, BatchConvBiasForward) { | |||
#if MGB_ENABLE_FASTRUN | |||
for (auto strategy : | |||
SmallVector<S>{S::PROFILE, S::HEURISTIC, S::PROFILE | S::REPRODUCIBLE, | |||
S::PROFILE | S::HEURISTIC, S::PROFILE | S::OPTMIZED}) { | |||
S::PROFILE | S::HEURISTIC, S::PROFILE | S::OPTIMIZED}) { | |||
#else | |||
for (auto strategy : | |||
SmallVector<S>{S : HEURISTIC, S::PROFILE | S::HEURISTIC}) { | |||
@@ -290,11 +290,8 @@ ExternCOprRunner::ExternCOprRunner(std::string& name, | |||
m_dump_name{name}, | |||
m_param{nullptr} { | |||
mgb_assert(m_desc->size == sizeof(MGBOprDesc), | |||
"invalid MGBOprDesc size: expect=%zu got=%u, may caused by " | |||
"extern_c_opr.h mismatch, please confirm that the " | |||
"extern_c_opr.h used when compiling the loader is consistent " | |||
"with the runtime caller build used", | |||
sizeof(MGBOprDesc), m_desc->size); | |||
"invalid MGBOprDesc size: expect=%zu got=%u", sizeof(MGBOprDesc), | |||
m_desc->size); | |||
for (auto i : inputs) { | |||
add_input({i}); | |||
} | |||
@@ -0,0 +1,8 @@ | |||
add_custom_command( | |||
OUTPUT link_sh | |||
COMMAND ${CMAKE_COMMAND} -E create_symlink | |||
${PROJECT_SOURCE_DIR}/tools/mlir/mgb-file-check/mgb-file-check.sh | |||
${PROJECT_BINARY_DIR}/tools/mlir/mgb-file-check/mgb-file-check | |||
) | |||
add_custom_target(mgb-file-check DEPENDS link_sh) |
@@ -0,0 +1,3 @@ | |||
#!/bin/bash -e | |||
FileCheck --enable-var-scope --dump-input=fail "$@" |
@@ -0,0 +1,23 @@ | |||
get_property(dialect_libs GLOBAL PROPERTY MLIR_DIALECT_LIBS) | |||
get_property(conversion_libs GLOBAL PROPERTY MLIR_CONVERSION_LIBS) | |||
set(LIBS | |||
${dialect_libs} | |||
${conversion_libs} | |||
LLVMSupport | |||
MLIROptLib | |||
MLIRIR | |||
MLIRPass | |||
MLIRSupport | |||
) | |||
add_executable(mgb-opt mgb-opt.cpp) | |||
target_include_directories( | |||
mgb-opt | |||
PRIVATE ${MLIR_LLVM_INCLUDE_DIR} ${PROJECT_SOURCE_DIR}/src/jit/include | |||
${PROJECT_BINARY_DIR}/src/jit/include) | |||
add_dependencies(mgb-opt mgb_dialect) | |||
target_link_libraries(mgb-opt PRIVATE ${LIBS} megbrain megdnn ${MGE_CUDA_LIBS}) | |||
llvm_update_compile_flags(mgb-opt) |
@@ -0,0 +1,85 @@ | |||
/** | |||
* \file tools/mlir/mgb-opt/mgb-opt.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "megbrain/jit/mlir/ir/dialect.h" | |||
#include "megbrain/jit/mlir/ir/passes.h" | |||
#include <llvm/Support/CommandLine.h> | |||
#include <llvm/Support/InitLLVM.h> | |||
#include <llvm/Support/PrettyStackTrace.h> | |||
#include <llvm/Support/SourceMgr.h> | |||
#include <llvm/Support/ToolOutputFile.h> | |||
#include <mlir/Dialect/Affine/IR/AffineOps.h> | |||
#include <mlir/Dialect/LLVMIR/LLVMDialect.h> | |||
#include <mlir/IR/AsmState.h> | |||
#include <mlir/InitAllDialects.h> | |||
#include <mlir/InitAllPasses.h> | |||
#include <mlir/Pass/Pass.h> | |||
#include <mlir/Pass/PassManager.h> | |||
#include <mlir/Support/FileUtilities.h> | |||
#include <mlir/Support/MlirOptMain.h> | |||
using namespace llvm; | |||
using namespace mlir; | |||
//! TODO: Implement a custom MlirOptMain that supports the following flags. | |||
static cl::opt<bool> print_mlir{ | |||
"print-mlir", | |||
cl::desc("Prints MLIR IR after translation"), | |||
cl::init(false), | |||
}; | |||
static cl::list<std::string> input_values{ | |||
"input-value", | |||
cl::desc("Input shapes and optional values"), | |||
cl::ZeroOrMore, | |||
}; | |||
static cl::opt<std::string> input_values_file{ | |||
"input-value-file", | |||
cl::desc("Provides a file for input shapes and optional values (see " | |||
"ParseToVariantListFromFile in vm_util.h for details)"), | |||
cl::init(""), | |||
}; | |||
static cl::opt<bool> run{ | |||
"run", | |||
cl::desc("Runs the module (vs. just compiling and verifing)"), | |||
cl::init(true), | |||
}; | |||
static cl::list<std::string> run_args{ | |||
"run-arg", | |||
cl::desc("Argument passed to the execution flag parser"), | |||
cl::ZeroOrMore, | |||
}; | |||
namespace mgb { | |||
namespace jit { | |||
void register_test_mgb_to_affine_lowering_pass(); | |||
void register_test_affine_to_llvm_lowering_pass(); | |||
} // namespace jit | |||
} // namespace mgb | |||
int main(int argc, char** argv) { | |||
mlir::registerAllPasses(); | |||
mlir::DialectRegistry registry; | |||
mlir::registerAllDialects(registry); | |||
registry.insert<mgb::jit::MgbDialect>(); | |||
mgb::jit::register_test_mgb_to_affine_lowering_pass(); | |||
mgb::jit::register_test_affine_to_llvm_lowering_pass(); | |||
return failed(MlirOptMain(argc, argv, "MLIR modular optimizer driver", registry)); | |||
} |
@@ -41,8 +41,14 @@ pdef('PersistentOutputStorage').add_fields( | |||
Doc('REPRODUCIBLE', | |||
'when profile or heuristic algo selection it require the algos' | |||
'must be reproducible'), | |||
Doc('OPTMIZED', | |||
'profile require algos are optmized to achieve fast-profile')). | |||
Doc('OPTIMIZED', | |||
'profile require algos are optmized to achieve fast-profile'), | |||
default=('HEURISTIC',), | |||
member_alias=[(('HEURISTIC', 'REPRODUCIBLE'), 'HEURISTIC_REPRODUCIBLE'), | |||
(('PROFILE', 'REPRODUCIBLE'), 'PROFILE_REPRODUCIBLE'), | |||
(('PROFILE', 'HEURISTIC'), 'PROFILE_HEURISTIC'), | |||
(('OPTIMIZED',), 'OPTMIZED'), | |||
]). | |||
add_fields('uint64', | |||
Doc('workspace_limit', 'workspace limit in bytes'), | |||
str(2**64-1)+'ull')) | |||