@@ -13,6 +13,12 @@ genrule( | |||
CUTLASS_WITH_LONG_PATH=true python3 $$GEN --operations conv2d --type simt $(@D) | |||
CUTLASS_WITH_LONG_PATH=true python3 $$GEN --operations conv2d --type tensorop8816 $(@D) | |||
CUTLASS_WITH_LONG_PATH=true python3 $$GEN --operations conv2d --type tensorop8832 $(@D) | |||
CUTLASS_WITH_LONG_PATH=true python3 $$GEN --operations dwconv2d_fprop --type simt $(@D) | |||
CUTLASS_WITH_LONG_PATH=true python3 $$GEN --operations dwconv2d_fprop --type tensorop884 $(@D) | |||
CUTLASS_WITH_LONG_PATH=true python3 $$GEN --operations dwconv2d_dgrad --type simt $(@D) | |||
CUTLASS_WITH_LONG_PATH=true python3 $$GEN --operations dwconv2d_dgrad --type tensorop884 $(@D) | |||
CUTLASS_WITH_LONG_PATH=true python3 $$GEN --operations dwconv2d_wgrad --type simt $(@D) | |||
CUTLASS_WITH_LONG_PATH=true python3 $$GEN --operations dwconv2d_wgrad --type tensorop884 $(@D) | |||
""", | |||
tools = ["//brain/megbrain/dnn/scripts/cutlass_generator:generator.py"], | |||
visibility = ["//visibility:public"], | |||
@@ -3,6 +3,9 @@ from generator import ( | |||
GenerateGemvOperations, | |||
GenerateConv2dOperations, | |||
GenerateDeconvOperations, | |||
GenerateDwconv2dFpropOperations, | |||
GenerateDwconv2dDgradOperations, | |||
GenerateDwconv2dWgradOperations, | |||
) | |||
@@ -21,6 +24,12 @@ def write_op_list(f, gen_op, gen_type): | |||
operations = GenerateConv2dOperations(GenArg(gen_op, gen_type)) | |||
elif gen_op == "deconv": | |||
operations = GenerateDeconvOperations(GenArg(gen_op, gen_type)) | |||
elif gen_op == "dwconv2d_fprop": | |||
operations = GenerateDwconv2dFpropOperations(GenArg(gen_op, gen_type)) | |||
elif gen_op == "dwconv2d_dgrad": | |||
operations = GenerateDwconv2dDgradOperations(GenArg(gen_op, gen_type)) | |||
elif gen_op == "dwconv2d_wgrad": | |||
operations = GenerateDwconv2dWgradOperations(GenArg(gen_op, gen_type)) | |||
for op in operations: | |||
f.write(' "%s.cu",\n' % op.procedural_name()) | |||
if gen_op != "gemv": | |||
@@ -40,4 +49,10 @@ if __name__ == "__main__": | |||
write_op_list(f, "conv2d", "simt") | |||
write_op_list(f, "conv2d", "tensorop8816") | |||
write_op_list(f, "conv2d", "tensorop8832") | |||
write_op_list(f, "dwconv2d_fprop", "simt") | |||
write_op_list(f, "dwconv2d_fprop", "tensorop884") | |||
write_op_list(f, "dwconv2d_dgrad", "simt") | |||
write_op_list(f, "dwconv2d_dgrad", "tensorop884") | |||
write_op_list(f, "dwconv2d_wgrad", "simt") | |||
write_op_list(f, "dwconv2d_wgrad", "tensorop884") | |||
f.write("]") |
@@ -10,24 +10,25 @@ import shutil | |||
from library import * | |||
from gemm_operation import * | |||
from conv2d_operation import * | |||
from conv2d_operation import * | |||
################################################################################################### | |||
class EmitOperationKindLibrary: | |||
def __init__(self, generated_path, kind, args): | |||
self.generated_path = generated_path | |||
self.kind = kind | |||
self.args = args | |||
def __init__(self, generated_path, kind, args): | |||
self.generated_path = generated_path | |||
self.kind = kind | |||
self.args = args | |||
self.emitters = { | |||
OperationKind.Gemm: EmitGemmConfigurationLibrary | |||
, OperationKind.Conv2d: EmitConv2dConfigurationLibrary | |||
} | |||
self.emitters = { | |||
OperationKind.Gemm: EmitGemmConfigurationLibrary, | |||
OperationKind.Conv2d: EmitConv2dConfigurationLibrary, | |||
} | |||
self.configurations = []; | |||
self.configurations = [] | |||
self.header_template =""" | |||
self.header_template = """ | |||
/* | |||
Generated by manifest.py - Do not edit. | |||
*/ | |||
@@ -42,17 +43,19 @@ namespace library { | |||
/////////////////////////////////////////////////////////////////////////////////////////////////// | |||
""" | |||
self.entry_template = """ | |||
self.entry_template = """ | |||
// | |||
// Entry point to construct operations | |||
// | |||
void initialize_all_${operation_name}_operations(Manifest &manifest) { | |||
""" | |||
self.configuration_prototype_template = "void initialize_${configuration_name}(Manifest &manifest);\n" | |||
self.configuration_template =" initialize_${configuration_name}(manifest);\n" | |||
self.configuration_prototype_template = ( | |||
"void initialize_${configuration_name}(Manifest &manifest);\n" | |||
) | |||
self.configuration_template = " initialize_${configuration_name}(manifest);\n" | |||
self.epilogue_template =""" | |||
self.epilogue_template = """ | |||
} | |||
@@ -63,91 +66,118 @@ void initialize_all_${operation_name}_operations(Manifest &manifest) { | |||
""" | |||
# | |||
def __enter__(self): | |||
self.operation_path = os.path.join(self.generated_path, OperationKindNames[self.kind]) | |||
os.mkdir(self.operation_path) | |||
# | |||
def __enter__(self): | |||
self.operation_path = os.path.join( | |||
self.generated_path, OperationKindNames[self.kind] | |||
) | |||
os.mkdir(self.operation_path) | |||
self.top_level_path = os.path.join( | |||
self.operation_path, "all_%s_operations.cu" % OperationKindNames[self.kind] | |||
) | |||
self.top_level_file = open(self.top_level_path, "w") | |||
self.top_level_file.write(self.header_template) | |||
self.top_level_path = os.path.join(self.operation_path, "all_%s_operations.cu" % OperationKindNames[self.kind]) | |||
self.source_files = [self.top_level_path] | |||
self.top_level_file = open(self.top_level_path, "w") | |||
self.top_level_file.write(self.header_template) | |||
return self | |||
self.source_files = [self.top_level_path,] | |||
# | |||
def emit(self, configuration_name, operations): | |||
return self | |||
with self.emitters[self.kind]( | |||
self.operation_path, configuration_name | |||
) as configuration_emitter: | |||
for operation in operations: | |||
configuration_emitter.emit(operation) | |||
# | |||
def emit(self, configuration_name, operations): | |||
self.source_files.append(configuration_emitter.configuration_path) | |||
with self.emitters[self.kind](self.operation_path, configuration_name) as configuration_emitter: | |||
for operation in operations: | |||
configuration_emitter.emit(operation) | |||
self.source_files.append(configuration_emitter.configuration_path) | |||
self.configurations.append(configuration_name) | |||
self.top_level_file.write( | |||
SubstituteTemplate( | |||
self.configuration_prototype_template, | |||
{"configuration_name": configuration_name}, | |||
) | |||
) | |||
self.configurations.append(configuration_name) | |||
self.top_level_file.write(SubstituteTemplate(self.configuration_prototype_template, {'configuration_name': configuration_name} )) | |||
# | |||
def __exit__(self, exception_type, exception_value, traceback): | |||
self.top_level_file.write( | |||
SubstituteTemplate( | |||
self.entry_template, {"operation_name": OperationKindNames[self.kind]} | |||
) | |||
) | |||
# | |||
def __exit__(self, exception_type, exception_value, traceback): | |||
self.top_level_file.write(SubstituteTemplate(self.entry_template, {'operation_name': OperationKindNames[self.kind]})) | |||
for configuration_name in self.configurations: | |||
self.top_level_file.write( | |||
SubstituteTemplate( | |||
self.configuration_template, | |||
{"configuration_name": configuration_name}, | |||
) | |||
) | |||
for configuration_name in self.configurations: | |||
self.top_level_file.write(SubstituteTemplate(self.configuration_template, {'configuration_name': configuration_name})) | |||
self.top_level_file.write(self.epilogue_template) | |||
self.top_level_file.close() | |||
self.top_level_file.write(self.epilogue_template) | |||
self.top_level_file.close() | |||
################################################################################################### | |||
################################################################################################### | |||
class Options: | |||
def __init__(self): | |||
pass | |||
def __init__(self): | |||
pass | |||
################################################################################################### | |||
# | |||
class Manifest: | |||
# | |||
def __init__(self, args): | |||
self.operations = {} | |||
self.args = args | |||
# | |||
def __init__(self, args): | |||
self.operations = {} | |||
self.args = args | |||
architectures = ( | |||
args.architectures.split(";") if len(args.architectures) else ["50"] | |||
) | |||
self.compute_capabilities = [int(x) for x in architectures] | |||
architectures = args.architectures.split(';') if len(args.architectures) else ['50',] | |||
self.compute_capabilities = [int(x) for x in architectures] | |||
self.selected_kernels = [] | |||
if args.operations == 'all': | |||
self.operations_enabled = [] | |||
else: | |||
self.selected_kernels = [] | |||
operations_list = [ | |||
OperationKind.Gemm | |||
, OperationKind.Conv2d | |||
] | |||
if args.operations == "all": | |||
self.operations_enabled = [] | |||
else: | |||
self.operations_enabled = [x for x in operations_list if OperationKindNames[x] in args.operations.split(',')] | |||
operations_list = [OperationKind.Gemm, OperationKind.Conv2d] | |||
if args.kernels == 'all': | |||
self.kernel_names = [] | |||
else: | |||
self.kernel_names = [x for x in args.kernels.split(',') if x != ''] | |||
self.operations_enabled = [ | |||
x | |||
for x in operations_list | |||
if OperationKindNames[x] in args.operations.split(",") | |||
] | |||
self.ignore_kernel_names = [x for x in args.ignore_kernels.split(',') if x != ''] | |||
if args.kernels == "all": | |||
self.kernel_names = [] | |||
else: | |||
self.kernel_names = [x for x in args.kernels.split(",") if x != ""] | |||
if args.kernel_filter_file is None: | |||
self.kernel_filter_list = [] | |||
else: | |||
self.kernel_filter_list = self.get_kernel_filters(args.kernel_filter_file) | |||
self.ignore_kernel_names = [ | |||
x for x in args.ignore_kernels.split(",") if x != "" | |||
] | |||
if args.kernel_filter_file is None: | |||
self.kernel_filter_list = [] | |||
else: | |||
self.kernel_filter_list = self.get_kernel_filters(args.kernel_filter_file) | |||
self.operation_count = 0 | |||
self.operations_by_name = {} | |||
self.top_level_prologue = ''' | |||
self.operation_count = 0 | |||
self.operations_by_name = {} | |||
self.top_level_prologue = """ | |||
#include "cutlass/library/library.h" | |||
#include "cutlass/library/manifest.h" | |||
@@ -159,208 +189,241 @@ ${prototypes} | |||
void initialize_all(Manifest &manifest) { | |||
''' | |||
self.top_level_reserve = ' manifest.reserve(${operation_count});\n\n' | |||
self.top_level_epilogue = ''' | |||
""" | |||
self.top_level_reserve = " manifest.reserve(${operation_count});\n\n" | |||
self.top_level_epilogue = """ | |||
} | |||
} // namespace library | |||
} // namespace cutlass | |||
''' | |||
def get_kernel_filters (self, kernelListFile): | |||
if os.path.isfile(kernelListFile): | |||
with open(kernelListFile, 'r') as fileReader: | |||
lines = [line.rstrip() for line in fileReader if not line.startswith("#")] | |||
lines = [re.compile(line) for line in lines if line] | |||
return lines | |||
else: | |||
return [] | |||
""" | |||
def get_kernel_filters(self, kernelListFile): | |||
if os.path.isfile(kernelListFile): | |||
with open(kernelListFile, "r") as fileReader: | |||
lines = [ | |||
line.rstrip() for line in fileReader if not line.startswith("#") | |||
] | |||
lines = [re.compile(line) for line in lines if line] | |||
return lines | |||
else: | |||
return [] | |||
def filter_out_kernels(self, kernel_name, kernel_filter_list): | |||
def filter_out_kernels(self, kernel_name, kernel_filter_list): | |||
for kernel_filter_re in kernel_filter_list: | |||
if kernel_filter_re.search(kernel_name) is not None: | |||
return True | |||
return False | |||
for kernel_filter_re in kernel_filter_list: | |||
if kernel_filter_re.search(kernel_name) is not None: | |||
return True | |||
# | |||
def _filter_string_matches(self, filter_string, haystack): | |||
''' Returns true if all substrings appear in the haystack in order''' | |||
substrings = filter_string.split('*') | |||
for sub in substrings: | |||
idx = haystack.find(sub) | |||
if idx < 0: | |||
return False | |||
haystack = haystack[idx + len(sub):] | |||
return True | |||
# | |||
def filter(self, operation): | |||
''' Filtering operations based on various criteria''' | |||
# filter based on compute capability | |||
enabled = False | |||
for cc in self.compute_capabilities: | |||
if cc >= operation.tile_description.minimum_compute_capability and \ | |||
cc <= operation.tile_description.maximum_compute_capability: | |||
enabled = True | |||
break | |||
if not enabled: | |||
return False | |||
if len(self.operations_enabled) and not operation.operation_kind in self.operations_enabled: | |||
return False | |||
# eliminate duplicates | |||
if operation.procedural_name() in self.operations_by_name.keys(): | |||
return False | |||
# Filter based on list of valid substrings | |||
if len(self.kernel_names): | |||
name = operation.procedural_name() | |||
enabled = False | |||
# compare against the include list | |||
for name_substr in self.kernel_names: | |||
if self._filter_string_matches(name_substr, name): | |||
enabled = True | |||
break | |||
# compare against the exclude list | |||
for name_substr in self.ignore_kernel_names: | |||
if self._filter_string_matches(name_substr, name): | |||
enabled = False | |||
break | |||
if len(self.kernel_filter_list) > 0: | |||
# | |||
def _filter_string_matches(self, filter_string, haystack): | |||
""" Returns true if all substrings appear in the haystack in order""" | |||
substrings = filter_string.split("*") | |||
for sub in substrings: | |||
idx = haystack.find(sub) | |||
if idx < 0: | |||
return False | |||
haystack = haystack[idx + len(sub) :] | |||
return True | |||
# | |||
def filter(self, operation): | |||
""" Filtering operations based on various criteria""" | |||
# filter based on compute capability | |||
enabled = False | |||
if self.filter_out_kernels(operation.procedural_name(), self.kernel_filter_list): | |||
enabled = True | |||
for cc in self.compute_capabilities: | |||
if ( | |||
cc >= operation.tile_description.minimum_compute_capability | |||
and cc <= operation.tile_description.maximum_compute_capability | |||
): | |||
enabled = True | |||
break | |||
if not enabled: | |||
return False | |||
if ( | |||
len(self.operations_enabled) | |||
and not operation.operation_kind in self.operations_enabled | |||
): | |||
return False | |||
# eliminate duplicates | |||
if operation.procedural_name() in self.operations_by_name.keys(): | |||
return False | |||
# Filter based on list of valid substrings | |||
if len(self.kernel_names): | |||
name = operation.procedural_name() | |||
enabled = False | |||
# compare against the include list | |||
for name_substr in self.kernel_names: | |||
if self._filter_string_matches(name_substr, name): | |||
enabled = True | |||
break | |||
# compare against the exclude list | |||
for name_substr in self.ignore_kernel_names: | |||
if self._filter_string_matches(name_substr, name): | |||
enabled = False | |||
break | |||
if len(self.kernel_filter_list) > 0: | |||
enabled = False | |||
if self.filter_out_kernels( | |||
operation.procedural_name(), self.kernel_filter_list | |||
): | |||
enabled = True | |||
# todo: filter based on compute data type | |||
return enabled | |||
# | |||
# | |||
def append(self, operation): | |||
""" | |||
Inserts the operation. | |||
operation_kind -> configuration_name -> [] | |||
""" | |||
# todo: filter based on compute data type | |||
return enabled | |||
# | |||
if self.filter(operation): | |||
# | |||
def append(self, operation): | |||
''' | |||
Inserts the operation. | |||
self.selected_kernels.append(operation.procedural_name()) | |||
operation_kind -> configuration_name -> [] | |||
''' | |||
self.operations_by_name[operation.procedural_name()] = operation | |||
if self.filter(operation): | |||
self.selected_kernels.append(operation.procedural_name()) | |||
# add the configuration | |||
configuration_name = operation.configuration_name() | |||
self.operations_by_name[operation.procedural_name()] = operation | |||
if operation.operation_kind not in self.operations.keys(): | |||
self.operations[operation.operation_kind] = {} | |||
# add the configuration | |||
configuration_name = operation.configuration_name() | |||
if ( | |||
configuration_name | |||
not in self.operations[operation.operation_kind].keys() | |||
): | |||
self.operations[operation.operation_kind][configuration_name] = [] | |||
if operation.operation_kind not in self.operations.keys(): | |||
self.operations[operation.operation_kind] = {} | |||
self.operations[operation.operation_kind][configuration_name].append( | |||
operation | |||
) | |||
self.operation_count += 1 | |||
if configuration_name not in self.operations[operation.operation_kind].keys(): | |||
self.operations[operation.operation_kind][configuration_name] = [] | |||
# | |||
self.operations[operation.operation_kind][configuration_name].append(operation) | |||
self.operation_count += 1 | |||
# | |||
# | |||
def emit(self, target=GeneratorTarget.Library): | |||
# | |||
def emit(self, target = GeneratorTarget.Library): | |||
operation_emitters = {GeneratorTarget.Library: EmitOperationKindLibrary} | |||
operation_emitters = { | |||
GeneratorTarget.Library: EmitOperationKindLibrary | |||
} | |||
generated_path = os.path.join(self.args.curr_build_dir, "generated") | |||
generated_path = os.path.join(self.args.curr_build_dir, 'generated') | |||
# create generated/ | |||
if os.path.exists(generated_path): | |||
shutil.rmtree(generated_path) | |||
# create generated/ | |||
if os.path.exists(generated_path): | |||
shutil.rmtree(generated_path) | |||
os.mkdir(generated_path) | |||
os.mkdir(generated_path) | |||
source_files = [] | |||
source_files = [] | |||
top_level_path = os.path.join(generated_path, "initialize_all.cpp") | |||
with open(top_level_path, "w") as top_level_file: | |||
top_level_path = os.path.join(generated_path, 'initialize_all.cpp') | |||
with open(top_level_path, 'w') as top_level_file: | |||
if target == GeneratorTarget.Library: | |||
source_files.append(top_level_path) | |||
if target == GeneratorTarget.Library: | |||
source_files.append(top_level_path) | |||
prototypes = [] | |||
for operation_kind, configurations in self.operations.items(): | |||
prototypes.append( | |||
SubstituteTemplate( | |||
"void initialize_all_${operation_kind}_operations(Manifest &manifest);", | |||
{"operation_kind": OperationKindNames[operation_kind]}, | |||
) | |||
) | |||
prototypes = [] | |||
for operation_kind, configurations in self.operations.items(): | |||
prototypes.append(SubstituteTemplate( | |||
"void initialize_all_${operation_kind}_operations(Manifest &manifest);", | |||
{'operation_kind': OperationKindNames[operation_kind]})) | |||
top_level_file.write( | |||
SubstituteTemplate( | |||
self.top_level_prologue, {"prototypes": "\n".join(prototypes)} | |||
) | |||
) | |||
top_level_file.write(SubstituteTemplate(self.top_level_prologue, | |||
{'prototypes': "\n".join(prototypes)})) | |||
top_level_file.write( | |||
SubstituteTemplate( | |||
self.top_level_reserve, | |||
{"operation_count": str(self.operation_count)}, | |||
) | |||
) | |||
top_level_file.write(SubstituteTemplate( | |||
self.top_level_reserve, {'operation_count': str(self.operation_count)})) | |||
# for each operation kind, emit initializer for all configurations | |||
for operation_kind, configurations in self.operations.items(): | |||
# for each operation kind, emit initializer for all configurations | |||
for operation_kind, configurations in self.operations.items(): | |||
with operation_emitters[target](generated_path, operation_kind, self.args) as operation_kind_emitter: | |||
for configuration_name, operations in configurations.items(): | |||
operation_kind_emitter.emit(configuration_name, operations) | |||
with operation_emitters[target]( | |||
generated_path, operation_kind, self.args | |||
) as operation_kind_emitter: | |||
for configuration_name, operations in configurations.items(): | |||
operation_kind_emitter.emit(configuration_name, operations) | |||
source_files += operation_kind_emitter.source_files | |||
source_files += operation_kind_emitter.source_files | |||
top_level_file.write(SubstituteTemplate( | |||
" initialize_all_${operation_kind}_operations(manifest);\n", | |||
{'operation_kind': OperationKindNames[operation_kind]})) | |||
top_level_file.write( | |||
SubstituteTemplate( | |||
" initialize_all_${operation_kind}_operations(manifest);\n", | |||
{"operation_kind": OperationKindNames[operation_kind]}, | |||
) | |||
) | |||
top_level_file.write(self.top_level_epilogue) | |||
top_level_file.write(self.top_level_epilogue) | |||
# write the manifest.cmake file containing paths from all targets | |||
manifest_path = os.path.join(generated_path, "manifest.cmake") | |||
with open(manifest_path, "w") as manifest_file: | |||
# write the manifest.cmake file containing paths from all targets | |||
manifest_path = os.path.join(generated_path, "manifest.cmake") | |||
with open(manifest_path, "w") as manifest_file: | |||
target_name = 'cutlass_library_objs' | |||
target_name = "cutlass_library_objs" | |||
target_text = SubstituteTemplate("""cutlass_target_sources( | |||
target_text = SubstituteTemplate( | |||
"""cutlass_target_sources( | |||
${target_name} | |||
BATCH_SOURCES ON | |||
PRIVATE | |||
""", { 'target_name': target_name}) | |||
""", | |||
{"target_name": target_name}, | |||
) | |||
manifest_file.write(target_text) | |||
manifest_file.write(target_text) | |||
for source_file in source_files: | |||
manifest_file.write(" %s\n" % str(source_file.replace("\\", "/"))) | |||
manifest_file.write(")") | |||
# | |||
for source_file in source_files: | |||
manifest_file.write(" %s\n" % str(source_file.replace('\\', '/'))) | |||
manifest_file.write(")") | |||
# | |||
################################################################################################### | |||
def GenerateManifest(args, operations, output_dir): | |||
assert isinstance(operations, list) | |||
if len(operations) == 0: | |||
return | |||
op = operations[0] | |||
required_cuda_ver_major = op.required_cuda_ver_major | |||
required_cuda_ver_minor = op.required_cuda_ver_minor | |||
manifest_path = os.path.join(output_dir, "all_%s_%s_operations.cu" % (args.operations, args.type)) | |||
f = open(manifest_path, "w") | |||
f.write(""" | |||
assert isinstance(operations, list) | |||
if len(operations) == 0: | |||
return | |||
op = operations[0] | |||
required_cuda_ver_major = op.required_cuda_ver_major | |||
required_cuda_ver_minor = op.required_cuda_ver_minor | |||
manifest_path = os.path.join( | |||
output_dir, "all_%s_%s_operations.cu" % (args.operations, args.type) | |||
) | |||
f = open(manifest_path, "w") | |||
f.write( | |||
""" | |||
/* | |||
Generated by generator.py - Do not edit. | |||
*/ | |||
@@ -374,24 +437,35 @@ def GenerateManifest(args, operations, output_dir): | |||
namespace cutlass { | |||
namespace library { | |||
""" % (str(required_cuda_ver_major), str(required_cuda_ver_major), str(required_cuda_ver_minor))) | |||
for op in operations: | |||
f.write("void initialize_%s(Manifest &manifest);\n" % op.procedural_name()) | |||
f.write(""" | |||
""" | |||
% ( | |||
str(required_cuda_ver_major), | |||
str(required_cuda_ver_major), | |||
str(required_cuda_ver_minor), | |||
) | |||
) | |||
for op in operations: | |||
f.write("void initialize_%s(Manifest &manifest);\n" % op.procedural_name()) | |||
f.write( | |||
""" | |||
void initialize_all_%s_%s_operations(Manifest &manifest) { | |||
""" % (args.operations, args.type)) | |||
""" | |||
% (args.operations, args.type) | |||
) | |||
for op in operations: | |||
f.write(" initialize_%s(manifest);\n" % op.procedural_name()) | |||
for op in operations: | |||
f.write(" initialize_%s(manifest);\n" % op.procedural_name()) | |||
f.write(""" | |||
f.write( | |||
""" | |||
} | |||
} // namespace library | |||
} // namespace cutlass | |||
#endif | |||
""") | |||
f.close() | |||
""" | |||
) | |||
f.close() |
@@ -181,6 +181,12 @@ if(MGE_WITH_CUDA) | |||
gen_cutlass_kimpl(conv2d simt CUTLASS_SOURCES) | |||
gen_cutlass_kimpl(conv2d tensorop8816 CUTLASS_SOURCES) | |||
gen_cutlass_kimpl(conv2d tensorop8832 CUTLASS_SOURCES) | |||
gen_cutlass_kimpl(dwconv2d_fprop simt CUTLASS_SOURCES) | |||
gen_cutlass_kimpl(dwconv2d_fprop tensorop884 CUTLASS_SOURCES) | |||
gen_cutlass_kimpl(dwconv2d_dgrad simt CUTLASS_SOURCES) | |||
gen_cutlass_kimpl(dwconv2d_dgrad tensorop884 CUTLASS_SOURCES) | |||
gen_cutlass_kimpl(dwconv2d_wgrad simt CUTLASS_SOURCES) | |||
gen_cutlass_kimpl(dwconv2d_wgrad tensorop884 CUTLASS_SOURCES) | |||
list(APPEND SOURCES ${CUTLASS_SOURCES}) | |||
list(APPEND SOURCES ${CUSOURCES}) | |||
endif() | |||
@@ -19,6 +19,7 @@ using namespace cuda; | |||
ConvBiasForwardImpl::AlgoPack::AlgoPack() { | |||
non_cudnn_algos.push_back(&chanwise); | |||
non_cudnn_algos.push_back(&chanwise_small); | |||
non_cudnn_algos.push_back(&depthwise_large_filter); | |||
non_cudnn_algos.push_back(&inplace_matmul); | |||
non_cudnn_algos.push_back(&matmul); | |||
@@ -34,6 +35,7 @@ ConvBiasForwardImpl::AlgoPack::AlgoPack() { | |||
std::vector<AlgoBase*> conv_algos; | |||
conv_algos.push_back(&chanwise); | |||
conv_algos.push_back(&chanwise_small); | |||
conv_algos.push_back(&depthwise_large_filter); | |||
conv_algos.push_back(&chanwise8x8x32); | |||
for (auto&& algo : cudnn_convs) { | |||
conv_algos.push_back(&algo); | |||
@@ -92,6 +94,7 @@ ConvBiasForwardImpl::AlgoPack::AlgoPack() { | |||
for (auto&& algo : int8_nchw4_dotprod) { | |||
all_algos.push_back(&algo); | |||
} | |||
fill_dwconv_algos(); | |||
all_algos.push_back(&int8_chwn4_dotprod); | |||
all_algos.push_back(&fallback_nchw_qs8); | |||
for (size_t i = all_algo_size; i < all_algos.size(); ++i) { | |||
@@ -301,6 +304,34 @@ void ConvBiasForwardImpl::AlgoPack::fill_imma_algos() { | |||
} | |||
#endif | |||
void ConvBiasForwardImpl::AlgoPack::fill_dwconv_algos() { | |||
using AlgoParam = AlgoCutlassConvolutionBase::AlgoParam; | |||
/// preferred algo | |||
f32_implicit_bmm.emplace_back(AlgoParam{64, 128, 8, 32, 64, 8, 1, 1, 1, 2}); | |||
f32_implicit_bmm.emplace_back(AlgoParam{128, 128, 8, 32, 64, 8, 1, 1, 1, 2}); | |||
f32_implicit_bmm.emplace_back(AlgoParam{128, 64, 8, 64, 32, 8, 1, 1, 1, 2}); | |||
f32_implicit_bmm.emplace_back(AlgoParam{128, 32, 8, 64, 32, 8, 1, 1, 1, 2}); | |||
f32_implicit_bmm.emplace_back(AlgoParam{32, 128, 8, 32, 64, 8, 1, 1, 1, 2}); | |||
f32_implicit_bmm.emplace_back(AlgoParam{64, 64, 8, 32, 64, 8, 1, 1, 1, 2}); | |||
f32_implicit_bmm.emplace_back(AlgoParam{32, 64, 8, 32, 64, 8, 1, 1, 1, 2}); | |||
f32_implicit_bmm.emplace_back(AlgoParam{32, 32, 8, 32, 32, 8, 1, 1, 1, 2}); | |||
f32_implicit_bmm.emplace_back(AlgoParam{64, 32, 8, 64, 32, 8, 1, 1, 1, 2}); | |||
for (auto&& algo : f32_implicit_bmm) { | |||
all_algos.push_back(&algo); | |||
} | |||
#if CUDA_VERSION >= 10010 | |||
/// preferred algo | |||
f16_implicit_bmm.emplace_back(AlgoParam{64, 128, 32, 32, 32, 32, 8, 8, 4, 2}); | |||
f16_implicit_bmm.emplace_back(AlgoParam{128, 128, 32, 32, 32, 32, 8, 8, 4, 2}); | |||
f16_implicit_bmm.emplace_back(AlgoParam{128, 256, 32, 64, 64, 32, 8, 8, 4, 2}); | |||
f16_implicit_bmm.emplace_back(AlgoParam{128, 64, 32, 32, 32, 32, 8, 8, 4, 2}); | |||
f16_implicit_bmm.emplace_back(AlgoParam{64, 64, 32, 32, 32, 32, 8, 8, 4, 2}); | |||
for (auto&& algo : f16_implicit_bmm) { | |||
all_algos.push_back(&algo); | |||
} | |||
#endif | |||
} | |||
void ConvBiasForwardImpl::AlgoPack::fill_dp4a_algos() { | |||
using AlgoParam = AlgoInt8NCHW4DotProdImplicitGemm::AlgoParam; | |||
int8_nchw4_dotprod.emplace_back(AlgoParam{128, 128, 32, 64, 32, 32, 1, 1, 4, 2}); | |||
@@ -22,7 +22,6 @@ | |||
#include "src/cuda/conv_bias/opr_impl.h" | |||
#include "src/cuda/convolution_helper/parameter.cuh" | |||
#include "src/cuda/cudnn_wrapper.h" | |||
#include "src/cuda/handle.h" | |||
#include <cuda.h> | |||
#include <memory> | |||
@@ -57,6 +56,7 @@ public: | |||
CUDA_CUDNN_CONVBIAS, | |||
CUDA_CHANWISE, | |||
CUDA_CHANWISE_SMALL, | |||
CUDA_DEPTHWISE_LARGE_FILTER, | |||
CUDA_CHANWISE_INT8X8X32, | |||
CUDA_CUDNN_CONV, | |||
CUDA_INPLACE_MATMUL, | |||
@@ -84,7 +84,9 @@ public: | |||
CUDA_IMPLICIT_GEMM_1X1_SASS_NCHW32_IMMA_INT8, | |||
CUDA_IMPLICIT_GEMM_SASS_NCHW64_IMMA_INT4_INT4, | |||
CUDA_IMPLICIT_GEMM_SASS_NCHW64_IMMA_UINT4_INT4, | |||
CUDA_FALLBACK_NCHW_INT4 | |||
CUDA_FALLBACK_NCHW_INT4, | |||
CUDA_IMPLICIT_BATCHED_GEMM_FMA_NCHW_F32, | |||
CUDA_IMPLICIT_BATCHED_GEMM_HMMA_NCHW_F16, | |||
}; | |||
using Mapper = std::unordered_map<AlgorithmDesc, AlgoBase*>; | |||
@@ -255,6 +257,26 @@ private: | |||
mutable std::string m_name; | |||
}; | |||
class ConvBiasForwardImpl::AlgoDepthwiseLargeFilter final : public AlgoBase { | |||
public: | |||
bool is_available(const SizeArgs& args) const override; | |||
size_t get_workspace_in_bytes(const SizeArgs& args) const override; | |||
void exec(const ExecArgs& args) const override; | |||
const char* name() const override { | |||
if (m_name.empty()) { | |||
m_name = ConvBiasForward::algo_name<DirectParam>( | |||
"DEPTHWISE_LARGE_FILTER", {}); | |||
} | |||
return m_name.c_str(); | |||
} | |||
MEGDNN_DECL_ALGO_TYPE(CUDA_DEPTHWISE_LARGE_FILTER) | |||
AlgoAttribute attribute() const override { return AlgoAttribute::REPRODUCIBLE; } | |||
private: | |||
mutable std::string m_name; | |||
}; | |||
class ConvBiasForwardImpl::AlgoChanwise8x8x32 final : public AlgoBase { | |||
public: | |||
bool is_available(const SizeArgs& args) const override; | |||
@@ -503,6 +525,8 @@ public: | |||
* +----+--- AlgoInt4Int4NHWCIMMAImplicitGemm | |||
* +----+--- AlgoUInt4Int4NHWCIMMAImplicitGemm | |||
* + | |||
* +--- AlgoFloat32NCHWImplicitBatchedGemm | |||
* +--- AlgoFloat16NCHWHMMAImplicitBatchedGemm | |||
*/ | |||
/* | |||
@@ -516,7 +540,13 @@ public: | |||
// corresponds to cutlass::conv::ConvType. we hope that algo.h does not | |||
// depend on cutlass headers | |||
enum class ConvType { kConvolution, kBatchConvolution, kLocal, kLocalShare }; | |||
enum class ConvType { | |||
kConvolution, | |||
kBatchConvolution, | |||
kLocal, | |||
kLocalShare, | |||
kDepthwiseConvolution, | |||
}; | |||
// common parameters for operation selection | |||
struct AlgoParam { | |||
@@ -558,7 +588,8 @@ public: | |||
size_t wo, size_t ph, size_t pw, size_t sh, size_t sw, size_t dh, size_t dw, | |||
const void* alpha, const void* beta, const void* gamma, const void* delta, | |||
const void* theta, const void* threshold, const void* dst_scale, | |||
cudaStream_t stream, const void* extra_param = nullptr) const; | |||
cudaStream_t stream, const void* extra_param = nullptr, | |||
size_t groups = 1) const; | |||
protected: | |||
AlgoParam m_algo_param; | |||
@@ -992,6 +1023,54 @@ private: | |||
}; | |||
#endif | |||
class ConvBiasForwardImpl::AlgoFloat32NCHWFMAImplicitBatchedGemm final | |||
: public AlgoCutlassConvolutionBase { | |||
public: | |||
AlgoFloat32NCHWFMAImplicitBatchedGemm(AlgoParam algo_param) | |||
: AlgoCutlassConvolutionBase(algo_param) { | |||
m_name = ConvBias::algo_name<ConvBias::DirectParam>( | |||
ssprintf( | |||
"FLOAT32_NCHW_FMA_IMPLICIT_BATCHED_GEMM%s", | |||
m_algo_param.to_string().c_str()), | |||
ConvBias::DirectParam{}); | |||
} | |||
bool is_available(const SizeArgs& args) const override; | |||
size_t get_workspace_in_bytes(const SizeArgs& /* args */) const override { | |||
return 0; | |||
} | |||
void exec(const ExecArgs& args) const override; | |||
const char* name() const override { return m_name.c_str(); }; | |||
AlgoAttribute attribute() const override { return AlgoAttribute::REPRODUCIBLE; } | |||
MEGDNN_DECL_ALGO_TYPE(CUDA_IMPLICIT_BATCHED_GEMM_FMA_NCHW_F32); | |||
private: | |||
std::string m_name; | |||
}; | |||
class ConvBiasForwardImpl::AlgoFloat16NCHWHMMAImplicitBatchedGemm final | |||
: public AlgoCutlassConvolutionBase { | |||
public: | |||
AlgoFloat16NCHWHMMAImplicitBatchedGemm(AlgoParam algo_param) | |||
: AlgoCutlassConvolutionBase(algo_param) { | |||
m_name = ConvBias::algo_name<ConvBias::DirectParam>( | |||
ssprintf( | |||
"FLOAT16_NCHW_HMMA_IMPLICIT_BATCHED_GEMM%s", | |||
m_algo_param.to_string().c_str()), | |||
ConvBias::DirectParam{}); | |||
} | |||
bool is_available(const SizeArgs& args) const override; | |||
size_t get_workspace_in_bytes(const SizeArgs& /* args */) const override { | |||
return 0; | |||
} | |||
void exec(const ExecArgs& args) const override; | |||
const char* name() const override { return m_name.c_str(); }; | |||
AlgoAttribute attribute() const override { return AlgoAttribute::REPRODUCIBLE; } | |||
MEGDNN_DECL_ALGO_TYPE(CUDA_IMPLICIT_BATCHED_GEMM_HMMA_NCHW_F16); | |||
private: | |||
std::string m_name; | |||
}; | |||
class ConvBiasForwardImpl::AlgoBFloat16 final : public AlgoBase { | |||
public: | |||
bool is_available(const SizeArgs& args) const override; | |||
@@ -1025,6 +1104,7 @@ public: | |||
AlgoFallbackNCHWQS8 fallback_nchw_qs8; | |||
AlgoChanwise chanwise; | |||
AlgoChanwiseSmall chanwise_small; | |||
AlgoDepthwiseLargeFilter depthwise_large_filter; | |||
AlgoChanwise8x8x32 chanwise8x8x32; | |||
AlgoInplaceMatmul inplace_matmul; | |||
AlgoMatmul matmul; | |||
@@ -1048,6 +1128,8 @@ public: | |||
std::vector<AlgoInt4Int4NHWCIMMAImplicitGemm> int4_int4_nhwc_imma; | |||
std::vector<AlgoUInt4Int4NHWCIMMAImplicitGemm> uint4_int4_nhwc_imma; | |||
#endif | |||
std::vector<AlgoFloat32NCHWFMAImplicitBatchedGemm> f32_implicit_bmm; | |||
std::vector<AlgoFloat16NCHWHMMAImplicitBatchedGemm> f16_implicit_bmm; | |||
AlgoGroupConvGeneral group; | |||
AlgoBFloat16 bfloat16; | |||
@@ -1063,6 +1145,7 @@ private: | |||
#endif | |||
void fill_cudnn_algos(); | |||
void fill_dp4a_algos(); | |||
void fill_dwconv_algos(); | |||
}; | |||
} // namespace cuda | |||
@@ -0,0 +1,179 @@ | |||
/** | |||
* \file dnn/src/cuda/conv_bias/chanwise/depthwise_large_filter.cuh | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#pragma once | |||
namespace { | |||
#define DIVUP(x, y) (((x) + (y)-1) / (y)) | |||
enum DepthwiseConv2dDirection { DIRECTION_FORWARD, DIRECTION_BACKWARD }; | |||
template <typename ThreadConfig_, int oh_, int ow_> | |||
struct OutTileConfig { | |||
using ThreadConfig = ThreadConfig_; | |||
static int const unroll_h = oh_; | |||
static int const unroll_w = ThreadConfig::thread_x * ow_; | |||
static int const unroll_size = unroll_h * unroll_w; | |||
static int const block_h = unroll_h * ThreadConfig::thread_y; | |||
static int const block_w = unroll_w; | |||
}; | |||
template <int fh_, int fw_> | |||
struct FilterTileConfig { | |||
static int const unroll_h = fh_; | |||
static int const unroll_w = fw_; | |||
static int const unroll_size = unroll_h * unroll_w; | |||
}; | |||
template <int x_, int y_> | |||
struct ThreadConfig { | |||
static int const thread_x = x_; | |||
static_assert((thread_x & (thread_x - 1)) == 0, "thread_x must be pow of 2!"); | |||
static int const thread_y = y_; | |||
static int const nr_threads = x_ * y_; | |||
}; | |||
template < | |||
typename ldg_dtype, typename ThreadConfig_, typename OutTileConfig_, | |||
typename FilterTileConfig_, int stride_w, int stride_h> | |||
struct ConvTraitInner { | |||
using ThreadConfig = ThreadConfig_; | |||
using OutTileConfig = OutTileConfig_; | |||
using FilterTileConfig = FilterTileConfig_; | |||
using CompType = ldg_dtype; | |||
struct SrcTileConfig { | |||
static int const unroll_h = | |||
OutTileConfig::unroll_h + FilterTileConfig::unroll_h - 1; | |||
static int const unroll_w = | |||
(OutTileConfig::unroll_w - 1) * stride_w + FilterTileConfig::unroll_w; | |||
static int const unroll_size = unroll_h * unroll_w; | |||
}; | |||
struct SrcTileCount { | |||
static int const smem_src_h = | |||
(OutTileConfig::block_h - 1) * stride_h + FilterTileConfig::unroll_h; | |||
static int const smem_buff_h = FilterTileConfig::unroll_h; | |||
static int const smem_load_h = smem_src_h + smem_buff_h; | |||
static int const smem_h = smem_load_h + smem_buff_h; | |||
static int const smem_w = | |||
DIVUP((OutTileConfig::block_w - 1) * stride_w + | |||
FilterTileConfig::unroll_w * ThreadConfig::thread_x, | |||
2) * | |||
2; | |||
static int const smem_size = smem_h * smem_w; | |||
static int const load_w = | |||
smem_w > ThreadConfig::nr_threads ? ThreadConfig::nr_threads : smem_w; | |||
static int const load_h = 1; | |||
static int const reg_h = 1; | |||
static int const reg_w = DIVUP(smem_w, load_w); | |||
static bool constexpr check_bounds_h = smem_h % load_h != 0; | |||
static bool constexpr check_bounds_w = smem_w % load_w != 0; | |||
}; | |||
struct FilterTileCount { | |||
static int const smem_flt_h = FilterTileConfig::unroll_h; | |||
static int const smem_buff_h = FilterTileConfig::unroll_h; | |||
static int const smem_load_h = smem_flt_h + smem_buff_h; | |||
static int const smem_h = smem_load_h + smem_buff_h; | |||
static int const smem_w = FilterTileConfig::unroll_w * ThreadConfig::thread_x; | |||
static int const smem_size = smem_h * smem_w; | |||
static int const load_w = smem_w > 32 ? 32 : smem_w; | |||
static int const load_h = ThreadConfig::nr_threads / load_w; | |||
static int const reg_h = 1; | |||
static int const reg_w = DIVUP(smem_w, load_w); | |||
static bool constexpr check_bounds_h = smem_h % load_h != 0; | |||
static bool constexpr check_bounds_w = smem_w % load_w != 0; | |||
}; | |||
}; | |||
#define CHECK_AB_FWD(a, b) \ | |||
if (param.out_w > b * 4) { \ | |||
if (param.stride_h == 1 && param.stride_w == 1) { \ | |||
using FilterTileConfig_ = FilterTileConfig<unroll_fh, a + 2>; \ | |||
using ThreadConfig_ = ThreadConfig<4, 32>; \ | |||
using OutTileConfig_ = OutTileConfig<ThreadConfig_, unroll_oh, b + 1>; \ | |||
using IConvTrait = ConvTraitInner< \ | |||
float, ThreadConfig_, OutTileConfig_, FilterTileConfig_, 1, 1>; \ | |||
using SrcTileConfig = typename IConvTrait::SrcTileConfig; \ | |||
using SrcTileCount = typename IConvTrait::SrcTileCount; \ | |||
using FilterTileCount = typename IConvTrait::FilterTileCount; \ | |||
\ | |||
if (device_prop.regsPerBlock < \ | |||
4 * 32 * \ | |||
(FilterTileConfig_::unroll_h * \ | |||
FilterTileConfig_::unroll_w * 2 + \ | |||
SrcTileConfig::unroll_h * SrcTileConfig::unroll_w) || \ | |||
device_prop.sharedMemPerBlock < \ | |||
static_cast<size_t>( \ | |||
(SrcTileCount::smem_size + \ | |||
FilterTileCount::smem_size))) { \ | |||
return false; \ | |||
} \ | |||
return true; \ | |||
} else if (param.stride_h == 2 && param.stride_w == 2) { \ | |||
using FilterTileConfig_ = FilterTileConfig<unroll_fh, a + 2>; \ | |||
using ThreadConfig_ = ThreadConfig<4, 32>; \ | |||
using OutTileConfig_ = OutTileConfig<ThreadConfig_, unroll_oh, b + 1>; \ | |||
using IConvTrait = ConvTraitInner< \ | |||
float, ThreadConfig_, OutTileConfig_, FilterTileConfig_, 2, 2>; \ | |||
using SrcTileConfig = typename IConvTrait::SrcTileConfig; \ | |||
using SrcTileCount = typename IConvTrait::SrcTileCount; \ | |||
using FilterTileCount = typename IConvTrait::FilterTileCount; \ | |||
\ | |||
if (device_prop.regsPerBlock < \ | |||
4 * 32 * \ | |||
(FilterTileConfig_::unroll_h * \ | |||
FilterTileConfig_::unroll_w * 2 + \ | |||
SrcTileConfig::unroll_h * SrcTileConfig::unroll_w) || \ | |||
device_prop.sharedMemPerBlock < \ | |||
static_cast<size_t>( \ | |||
(SrcTileCount::smem_size + \ | |||
FilterTileCount::smem_size))) { \ | |||
return false; \ | |||
} \ | |||
return true; \ | |||
} \ | |||
} | |||
#define CHECK_AB_BWD(a, b) \ | |||
if (param.out_w > b * 4) { \ | |||
using FilterTileConfig_ = FilterTileConfig<unroll_fh, a + 2>; \ | |||
using ThreadConfig_ = ThreadConfig<4, 32>; \ | |||
using OutTileConfig_ = OutTileConfig<ThreadConfig_, unroll_oh, b + 1>; \ | |||
using IConvTrait = ConvTraitInner< \ | |||
float, ThreadConfig_, OutTileConfig_, FilterTileConfig_, 1, 1>; \ | |||
using SrcTileConfig = typename IConvTrait::SrcTileConfig; \ | |||
using SrcTileCount = typename IConvTrait::SrcTileCount; \ | |||
using FilterTileCount = typename IConvTrait::FilterTileCount; \ | |||
\ | |||
if (device_prop.regsPerBlock < \ | |||
4 * 32 * \ | |||
(FilterTileConfig_::unroll_h * \ | |||
FilterTileConfig_::unroll_w * 2 + \ | |||
SrcTileConfig::unroll_h * SrcTileConfig::unroll_w) || \ | |||
device_prop.sharedMemPerBlock < \ | |||
static_cast<size_t>( \ | |||
(SrcTileCount::smem_size + FilterTileCount::smem_size))) { \ | |||
return false; \ | |||
} \ | |||
return true; \ | |||
} | |||
#define CHECK_A(a, cb) \ | |||
if (param.flt_w > a * 4) { \ | |||
CHECK_AB_##cb( \ | |||
a, \ | |||
15) else CHECK_AB_##cb(a, 14) else CHECK_AB_##cb(a, 13) else CHECK_AB_##cb(a, 12) else CHECK_AB_##cb(a, 11) else CHECK_AB_##cb(a, 10) else CHECK_AB_##cb(a, 9) else CHECK_AB_##cb(a, 8) else CHECK_AB_##cb(a, 7) else CHECK_AB_##cb(a, 6) else CHECK_AB_##cb(a, 5) else CHECK_AB_##cb(a, 4) else CHECK_AB_##cb(a, 3) else CHECK_AB_##cb(a, 2) else CHECK_AB_##cb(a, 1) else CHECK_AB_##cb(a, 0) \ | |||
} | |||
#define CHECK(cb) \ | |||
CHECK_A(6, cb) \ | |||
else CHECK_A(4, cb) else CHECK_A(2, cb) else CHECK_A(0, cb) | |||
} // namespace |
@@ -0,0 +1,914 @@ | |||
/** | |||
* \file dnn/src/cuda/conv_bias/chanwise/depthwise_large_filter_algo.cuh | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#pragma once | |||
#include "depthwise_large_filter.cuh" | |||
#include "src/cuda/cuda_shfl_compat.cuh" | |||
namespace { | |||
template < | |||
typename T, DepthwiseConv2dDirection kDirection, typename ThreadConfig_, | |||
typename TileCount_> | |||
struct Global2SharedMem { | |||
using TileCount = TileCount_; | |||
using ThreadConfig = ThreadConfig_; | |||
T reg[TileCount::reg_w]; | |||
const int tidx = threadIdx.x; | |||
const int tidy = threadIdx.y; | |||
const int tid = tidy * ThreadConfig::thread_x + tidx; | |||
const int gl_load_y = tid / TileCount::load_w; | |||
const int gl_load_x = tid - gl_load_y * TileCount::load_w; | |||
const bool is_fwd = (kDirection == DIRECTION_FORWARD); | |||
int w_offset; | |||
T* smem; | |||
int stride; | |||
int start_h, start_w, bound_h, bound_w, ring_smem_h, ring_src_h; | |||
// just used in backward src data | |||
int stride_h, stride_w; | |||
const T* g_ptr; | |||
__device__ __forceinline__ Global2SharedMem( | |||
T* smem_, int stride_, int s_h, int s_w, int b_h, int b_w, int stride_h_, | |||
int stride_w_); | |||
__device__ __forceinline__ void first_copy(); | |||
__device__ __forceinline__ void copy(); | |||
__device__ __forceinline__ void commit(); | |||
__device__ __forceinline__ void iter_forward(); | |||
__device__ __forceinline__ T* sh_ptr(int y, int x) { | |||
return &smem[y * TileCount::smem_w + x]; | |||
} | |||
__device__ __forceinline__ T* sh_ptr_as_copy_t(int y, int x) { | |||
return reinterpret_cast<T*>(sh_ptr(y, x)); | |||
} | |||
}; | |||
template < | |||
typename ldg_dtype, DepthwiseConv2dDirection kDirection, typename ThreadConfig_, | |||
typename OutTileConfig_, typename FilterTileConfig_, int stride_w, int stride_h> | |||
struct ConvTrait { | |||
using ThreadConfig = ThreadConfig_; | |||
using OutTileConfig = OutTileConfig_; | |||
using FilterTileConfig = FilterTileConfig_; | |||
using CompType = ldg_dtype; | |||
using CI = ConvTraitInner< | |||
ldg_dtype, ThreadConfig_, OutTileConfig_, FilterTileConfig_, stride_w, | |||
stride_h>; | |||
using SrcTileConfig = typename CI::SrcTileConfig; | |||
using SrcTileCount = typename CI::SrcTileCount; | |||
using FilterTileCount = typename CI::FilterTileCount; | |||
using SrcGlobal2ShareVisitor = Global2SharedMem< | |||
CompType, DepthwiseConv2dDirection::DIRECTION_FORWARD, ThreadConfig, | |||
SrcTileCount>; | |||
using FilterGlobal2ShareVisitor = | |||
Global2SharedMem<CompType, kDirection, ThreadConfig, FilterTileCount>; | |||
}; | |||
template < | |||
typename T, DepthwiseConv2dDirection kDirection, typename ThreadConfig_, | |||
typename TileCount_> | |||
__device__ __forceinline__ | |||
Global2SharedMem<T, kDirection, ThreadConfig_, TileCount_>::Global2SharedMem( | |||
T* smem_, int stride_, int s_h, int s_w, int b_h, int b_w, int stride_h_, | |||
int stride_w_) | |||
: smem(smem_), | |||
stride(stride_), | |||
start_h(s_h), | |||
start_w(s_w), | |||
bound_h(b_h), | |||
bound_w(b_w), | |||
ring_smem_h(TileCount::smem_load_h), | |||
stride_h(stride_h_), | |||
stride_w(stride_w_) { | |||
if (is_fwd) { | |||
ring_src_h = s_h + TileCount::smem_load_h; | |||
w_offset = 0; | |||
} else { | |||
ring_src_h = s_h - 1; | |||
w_offset = TileCount::smem_w - b_w; | |||
// stride_h and stride_w just used in backward src data. | |||
stride_h = stride_w = 1; | |||
} | |||
} | |||
template < | |||
typename T, DepthwiseConv2dDirection kDirection, typename ThreadConfig_, | |||
typename TileCount_> | |||
__device__ __forceinline__ void Global2SharedMem< | |||
T, kDirection, ThreadConfig_, TileCount_>::first_copy() { | |||
static int const load_w = TileCount::smem_w > 32 ? 32 : TileCount::smem_w; | |||
static int const load_h = ThreadConfig::nr_threads / load_w; | |||
static int const h_per_thread = DIVUP(TileCount::smem_load_h, load_h); | |||
static int const w_per_thread = DIVUP(TileCount::smem_w, load_w); | |||
static bool constexpr check_bounds_h = TileCount::smem_load_h % load_h != 0; | |||
static bool constexpr check_bounds_w = TileCount::smem_w % load_w != 0; | |||
const int y_base_idx = tid / load_w; | |||
const int x_base_idx = tid - y_base_idx * load_w; | |||
#pragma unroll | |||
for (int i = 0; i < h_per_thread; ++i) { | |||
int smem_h_idx = y_base_idx + i * load_h; | |||
int src_h_idx; | |||
if (is_fwd) { | |||
src_h_idx = start_h + smem_h_idx; | |||
} else { | |||
src_h_idx = start_h + TileCount::smem_load_h - smem_h_idx - 1; | |||
} | |||
if (check_bounds_h && smem_h_idx >= TileCount::smem_load_h) | |||
continue; | |||
#pragma unroll | |||
for (int j = 0; j < w_per_thread; ++j) { | |||
int smem_w_idx = x_base_idx + j * load_w; | |||
int src_w_idx; | |||
if (is_fwd) { | |||
src_w_idx = start_w + smem_w_idx; | |||
} else { | |||
src_w_idx = start_w + TileCount::smem_w - w_offset - smem_w_idx - 1; | |||
} | |||
if (check_bounds_w && smem_w_idx >= TileCount::smem_w) | |||
continue; | |||
T val = 0.0f; | |||
if (src_h_idx >= 0 && src_h_idx < bound_h && src_w_idx >= 0 && | |||
src_w_idx < bound_w && | |||
((is_fwd && src_h_idx % stride_h == 0 && src_w_idx % stride_w == 0) || | |||
(!is_fwd && TileCount::smem_load_h - smem_h_idx - 1 >= 0 && | |||
TileCount::smem_w - w_offset - smem_w_idx - 1 >= 0))) { | |||
val = g_ptr[src_h_idx / stride_h * stride + src_w_idx / stride_w]; | |||
} | |||
*(sh_ptr_as_copy_t(smem_h_idx, smem_w_idx)) = val; | |||
} | |||
} | |||
} | |||
template < | |||
typename T, DepthwiseConv2dDirection kDirection, typename ThreadConfig_, | |||
typename TileCount_> | |||
__device__ __forceinline__ void Global2SharedMem< | |||
T, kDirection, ThreadConfig_, TileCount_>::copy() { | |||
#pragma unroll | |||
for (int j = 0; j < TileCount::reg_w; ++j) { | |||
int smem_w_idx = gl_load_x + j * TileCount::load_w; | |||
int src_w_idx; | |||
if (is_fwd) { | |||
src_w_idx = start_w + smem_w_idx; | |||
} else { | |||
src_w_idx = start_w + TileCount::smem_w - w_offset - smem_w_idx - 1; | |||
} | |||
if (TileCount::check_bounds_w && smem_w_idx >= TileCount::smem_w) | |||
continue; | |||
T val = 0.0f; | |||
if (ring_src_h >= 0 && ring_src_h < bound_h && src_w_idx >= 0 && | |||
src_w_idx < bound_w && | |||
((is_fwd && ring_src_h % stride_h == 0 && src_w_idx % stride_w == 0) || | |||
(!is_fwd && TileCount::smem_w - w_offset - smem_w_idx - 1 >= 0))) { | |||
val = g_ptr[ring_src_h / stride_h * stride + src_w_idx / stride_w]; | |||
} | |||
reg[j] = val; | |||
} | |||
} | |||
template < | |||
typename T, DepthwiseConv2dDirection kDirection, typename ThreadConfig_, | |||
typename TileCount_> | |||
__device__ __forceinline__ void Global2SharedMem< | |||
T, kDirection, ThreadConfig_, TileCount_>::commit() { | |||
#pragma unroll | |||
for (int j = 0; j < TileCount::reg_w; ++j) { | |||
int smem_w_idx = gl_load_x + j * TileCount::load_w; | |||
if (TileCount::check_bounds_w && smem_w_idx >= TileCount::smem_w) | |||
continue; | |||
*(sh_ptr_as_copy_t(ring_smem_h, smem_w_idx)) = reg[j]; | |||
} | |||
} | |||
template < | |||
typename T, DepthwiseConv2dDirection kDirection, typename ThreadConfig_, | |||
typename TileCount_> | |||
__device__ __forceinline__ void Global2SharedMem< | |||
T, kDirection, ThreadConfig_, TileCount_>::iter_forward() { | |||
if (is_fwd) { | |||
ring_src_h++; | |||
} else { | |||
ring_src_h--; | |||
} | |||
ring_smem_h = (ring_smem_h + 1) % TileCount::smem_h; | |||
} | |||
// CUDA kernel to compute the depthwise convolution forward pass in NCHW format, | |||
// tailored for small images up to 32x32. Stride and depth multiplier must be 1. | |||
// Padding must be 'SAME', which allows to reuse the index computation. Only | |||
// use this kernel if CanLaunchDepthwiseConv2dGPU(args) returns true. | |||
// Tiles of the input and filter tensors are loaded into shared memory before | |||
// performing the convolution. Each thread handles two elements per iteration, | |||
// one each in the lower and upper half of a tile. | |||
// Backprop input direction is the same as forward direction with the filter | |||
// rotated by 180°. | |||
#if CUDA_VERSION >= 9000 | |||
template <typename ConvTrait, DepthwiseConv2dDirection kDirection> | |||
__global__ void DepthwiseConv2dGPUKernelNCHW( | |||
const Param param, const __half* input, const __half* filter, __half* output) { | |||
using T = __half; | |||
using T2 = __half2; | |||
using ThreadConfig = typename ConvTrait::ThreadConfig; | |||
using SrcTileConfig = typename ConvTrait::SrcTileConfig; | |||
using FilterTileConfig = typename ConvTrait::FilterTileConfig; | |||
using OutTileConfig = typename ConvTrait::OutTileConfig; | |||
using SrcTileCount = typename ConvTrait::SrcTileCount; | |||
using FilterTileCount = typename ConvTrait::FilterTileCount; | |||
using SrcGlobal2ShareVisitor = typename ConvTrait::SrcGlobal2ShareVisitor; | |||
using FilterGlobal2ShareVisitor = typename ConvTrait::FilterGlobal2ShareVisitor; | |||
const bool is_fwd = (kDirection == DepthwiseConv2dDirection::DIRECTION_FORWARD); | |||
int off_ochannel = blockIdx.x, off_obw = blockIdx.y, off_obh = blockIdx.z, | |||
off_oh = threadIdx.y, off_ow = threadIdx.x; | |||
constexpr int t2_src_unroll_w = (SrcTileConfig::unroll_w + 3) / 2; | |||
constexpr int t2_flt_unroll_w = (FilterTileConfig::unroll_w + 2) / 2; | |||
constexpr int t2_out_unroll_w = (OutTileConfig::unroll_w + 1) / 2; | |||
extern __shared__ __align__(8) unsigned char smem[]; | |||
static_assert(sizeof(T) <= 8, "Insufficient alignment detected"); | |||
T* smem_src = reinterpret_cast<T*>(smem); | |||
T* smem_flt = reinterpret_cast<T*>(&smem_src[SrcTileCount::smem_size]); | |||
int stride_h = is_fwd ? param.stride_h : 1; | |||
int stride_w = is_fwd ? param.stride_w : 1; | |||
int off_ichannel = off_ochannel / param.chl_mul, | |||
off_fchannel = off_ichannel % param.src_chl, | |||
out_start_h = off_obh * OutTileConfig::block_h, | |||
out_start_w = off_obw * OutTileConfig::block_w, | |||
src_start_h = out_start_h * stride_h - param.pad_h, | |||
src_start_w = out_start_w * stride_w - param.pad_w, | |||
out_base_h_idx = out_start_h + off_oh * OutTileConfig::unroll_h; | |||
T* smem_src_ptr = smem_src + off_ow * FilterTileConfig::unroll_w; | |||
T* smem_flt_ptr = smem_flt + off_ow * FilterTileConfig::unroll_w; | |||
T* out_base_ptr = output + off_ochannel * param.out_h * param.out_w; | |||
SrcGlobal2ShareVisitor gl2sh_src = { | |||
smem_src, | |||
param.src_w, | |||
is_fwd ? src_start_h | |||
: src_start_h - (param.out_h / 2 + param.flt_h / 2 - param.pad_h - | |||
param.src_h * param.stride_h / 2), | |||
is_fwd ? src_start_w | |||
: src_start_w - (param.out_w / 2 + param.flt_w / 2 - param.pad_w - | |||
param.src_w * param.stride_w / 2), | |||
is_fwd ? param.src_h : param.src_h * param.stride_h, | |||
is_fwd ? param.src_w : param.src_w * param.stride_w, | |||
is_fwd ? 1 : param.stride_h, | |||
is_fwd ? 1 : param.stride_w}; | |||
FilterGlobal2ShareVisitor gl2sh_flt = {smem_flt, | |||
param.flt_w, | |||
is_fwd ? 0 : param.flt_h - 2, | |||
0, | |||
param.flt_h, | |||
param.flt_w, | |||
1, | |||
1}; | |||
gl2sh_src.g_ptr = input + off_ichannel * param.src_h * param.src_w; | |||
gl2sh_flt.g_ptr = filter + off_fchannel * param.flt_h * param.flt_w; | |||
gl2sh_src.first_copy(); | |||
gl2sh_flt.first_copy(); | |||
__syncthreads(); | |||
T2 reg_src[SrcTileConfig::unroll_h * t2_src_unroll_w], | |||
reg_flt[2][FilterTileConfig::unroll_h * t2_flt_unroll_w]; | |||
T2 sum[OutTileConfig::unroll_size] = {{0.0, 0.0}}; | |||
for (int fh = 0; fh < param.flt_h; fh += FilterTileConfig::unroll_h) { | |||
gl2sh_src.copy(); | |||
gl2sh_flt.copy(); | |||
#pragma unroll | |||
for (int s_h = 0; s_h < SrcTileConfig::unroll_h; ++s_h) { | |||
#pragma unroll | |||
for (int s_w = 0; s_w < t2_src_unroll_w; ++s_w) { | |||
int src_offset = (off_oh * stride_h + fh + s_h) % SrcTileCount::smem_h * | |||
SrcTileCount::smem_w + | |||
s_w * 2; | |||
reg_src[s_h * t2_src_unroll_w + s_w] = | |||
*reinterpret_cast<T2*>(smem_src_ptr + src_offset); | |||
} | |||
} | |||
#pragma unroll | |||
for (int f_h = 0; f_h < FilterTileConfig::unroll_h; ++f_h) { | |||
#pragma unroll | |||
for (int f_w = 0; f_w < t2_flt_unroll_w - 1; ++f_w) { | |||
int flt_offset = | |||
(fh + f_h) % FilterTileCount::smem_h * FilterTileCount::smem_w + | |||
f_w * 2; | |||
reg_flt[0][f_h * t2_flt_unroll_w + f_w] = | |||
*reinterpret_cast<T2*>(smem_flt_ptr + flt_offset); | |||
if (f_w > 0) { | |||
reg_flt[1][f_h * t2_flt_unroll_w + f_w] = | |||
T2{reg_flt[0][f_h * t2_flt_unroll_w + f_w - 1].y, | |||
reg_flt[0][f_h * t2_flt_unroll_w + f_w].x}; | |||
} else { | |||
reg_flt[1][f_h * t2_flt_unroll_w + f_w] = | |||
T2{0.0, reg_flt[0][f_h * t2_flt_unroll_w + f_w].x}; | |||
} | |||
} | |||
reg_flt[0][f_h * t2_flt_unroll_w + t2_flt_unroll_w - 1] = T2{0.0, 0.0}; | |||
reg_flt[1][f_h * t2_flt_unroll_w + t2_flt_unroll_w - 1] = | |||
T2{reg_flt[0][f_h * t2_flt_unroll_w + t2_flt_unroll_w - 2].y, 0.0}; | |||
} | |||
#pragma unroll | |||
for (int inner_fh = 0; inner_fh < FilterTileConfig::unroll_h; ++inner_fh) { | |||
#pragma unroll | |||
for (int oh = 0; oh < OutTileConfig::unroll_h; ++oh) { | |||
#pragma unroll | |||
for (int fw = 0; fw < t2_flt_unroll_w; ++fw) { | |||
#pragma unroll | |||
for (int ow = 0; ow < OutTileConfig::unroll_w; ++ow) { | |||
sum[oh * t2_out_unroll_w + ow] = megdnn::cuda::fma2( | |||
reg_flt[ow * stride_w % 2] | |||
[inner_fh * t2_flt_unroll_w + fw], | |||
reg_src[(inner_fh + oh) * t2_src_unroll_w + fw + | |||
ow * stride_w / 2], | |||
sum[oh * t2_out_unroll_w + ow]); | |||
} | |||
} | |||
} | |||
} | |||
__syncthreads(); | |||
gl2sh_src.commit(); | |||
gl2sh_flt.commit(); | |||
gl2sh_src.iter_forward(); | |||
gl2sh_flt.iter_forward(); | |||
__syncthreads(); | |||
} | |||
for (int o = 0; o < OutTileConfig::unroll_size; ++o) { | |||
for (int i = 1; i < ThreadConfig::thread_x; i = i << 1) { | |||
sum[o] = megdnn::cuda::hadd2(sum[o], __shfl_xor(sum[o], i, 32)); | |||
} | |||
} | |||
if (threadIdx.x == 0) { | |||
#pragma unroll | |||
for (int i = 0; i < OutTileConfig::unroll_h; ++i) { | |||
int out_h_idx = out_base_h_idx + i; | |||
if (out_h_idx < param.out_h) { | |||
#pragma unroll | |||
for (int j = 0; j < OutTileConfig::unroll_w; ++j) { | |||
int out_w_idx = out_start_w + j; | |||
if (out_w_idx >= param.out_w) | |||
return; | |||
out_base_ptr[out_h_idx * param.out_w + out_w_idx] = __float2half( | |||
__half2float(sum[i * OutTileConfig::unroll_w + j].x) + | |||
__half2float(sum[i * OutTileConfig::unroll_w + j].y)); | |||
} | |||
} | |||
} | |||
} | |||
} | |||
template <typename ConvTrait, DepthwiseConv2dDirection kDirection> | |||
__global__ void DepthwiseConv2dGPUKernelNCHWC32( | |||
const Param param, const __half* input, const __half* filter, __half* output) { | |||
using T = __half; | |||
using T2 = __half2; | |||
using ThreadConfig = typename ConvTrait::ThreadConfig; | |||
using SrcTileConfig = typename ConvTrait::SrcTileConfig; | |||
using FilterTileConfig = typename ConvTrait::FilterTileConfig; | |||
using OutTileConfig = typename ConvTrait::OutTileConfig; | |||
using SrcTileCount = typename ConvTrait::SrcTileCount; | |||
using FilterTileCount = typename ConvTrait::FilterTileCount; | |||
using SrcGlobal2ShareVisitor = typename ConvTrait::SrcGlobal2ShareVisitor; | |||
using FilterGlobal2ShareVisitor = typename ConvTrait::FilterGlobal2ShareVisitor; | |||
const bool is_fwd = (kDirection == DepthwiseConv2dDirection::DIRECTION_FORWARD); | |||
int off_ochannel = blockIdx.x, off_obw = blockIdx.y, off_obh = blockIdx.z, | |||
off_oh = threadIdx.y, off_ow = threadIdx.x; | |||
constexpr int t2_src_unroll_w = (SrcTileConfig::unroll_w + 3) / 2; | |||
constexpr int t2_flt_unroll_w = (FilterTileConfig::unroll_w + 2) / 2; | |||
constexpr int t2_out_unroll_w = (OutTileConfig::unroll_w + 1) / 2; | |||
extern __shared__ __align__(8) unsigned char smem[]; | |||
static_assert(sizeof(T) <= 8, "Insufficient alignment detected"); | |||
T* smem_src = reinterpret_cast<T*>(smem); | |||
T* smem_flt = reinterpret_cast<T*>(&smem_src[SrcTileCount::smem_size]); | |||
int stride_h = is_fwd ? param.stride_h : 1; | |||
int stride_w = is_fwd ? param.stride_w : 1; | |||
int off_ichannel = off_ochannel / param.chl_mul, | |||
off_fchannel = off_ichannel % param.src_chl, | |||
out_start_h = off_obh * OutTileConfig::block_h, | |||
out_start_w = off_obw * OutTileConfig::block_w, | |||
src_start_h = out_start_h * stride_h - param.pad_h, | |||
src_start_w = out_start_w * stride_w - param.pad_w, | |||
out_base_h_idx = out_start_h + off_oh * OutTileConfig::unroll_h; | |||
T* smem_src_ptr = smem_src + off_ow * FilterTileConfig::unroll_w; | |||
T* smem_flt_ptr = smem_flt + off_ow * FilterTileConfig::unroll_w; | |||
T* out_base_ptr = output + off_ochannel * param.out_h * param.out_w; | |||
SrcGlobal2ShareVisitor gl2sh_src = { | |||
smem_src, | |||
param.src_w, | |||
is_fwd ? src_start_h | |||
: src_start_h - (param.out_h / 2 + param.flt_h / 2 - param.pad_h - | |||
param.src_h * param.stride_h / 2), | |||
is_fwd ? src_start_w | |||
: src_start_w - (param.out_w / 2 + param.flt_w / 2 - param.pad_w - | |||
param.src_w * param.stride_w / 2), | |||
is_fwd ? param.src_h : param.src_h * param.stride_h, | |||
is_fwd ? param.src_w : param.src_w * param.stride_w, | |||
is_fwd ? 1 : param.stride_h, | |||
is_fwd ? 1 : param.stride_w}; | |||
FilterGlobal2ShareVisitor gl2sh_flt = {smem_flt, | |||
param.flt_w, | |||
is_fwd ? 0 : param.flt_h - 2, | |||
0, | |||
param.flt_h, | |||
param.flt_w, | |||
1, | |||
1}; | |||
gl2sh_src.g_ptr = input + off_ichannel * param.src_h * param.src_w; | |||
gl2sh_flt.g_ptr = filter + off_fchannel * param.flt_h * param.flt_w; | |||
gl2sh_src.first_copy(); | |||
gl2sh_flt.first_copy(); | |||
__syncthreads(); | |||
T2 reg_src[SrcTileConfig::unroll_h * t2_src_unroll_w], | |||
reg_flt[2][FilterTileConfig::unroll_h * t2_flt_unroll_w]; | |||
float2 sum[OutTileConfig::unroll_size] = {{0.0, 0.0}}; | |||
for (int fh = 0; fh < param.flt_h; fh += FilterTileConfig::unroll_h) { | |||
gl2sh_src.copy(); | |||
gl2sh_flt.copy(); | |||
#pragma unroll | |||
for (int s_h = 0; s_h < SrcTileConfig::unroll_h; ++s_h) { | |||
#pragma unroll | |||
for (int s_w = 0; s_w < t2_src_unroll_w; ++s_w) { | |||
int src_offset = (off_oh * stride_h + fh + s_h) % SrcTileCount::smem_h * | |||
SrcTileCount::smem_w + | |||
s_w * 2; | |||
reg_src[s_h * t2_src_unroll_w + s_w] = | |||
*reinterpret_cast<T2*>(smem_src_ptr + src_offset); | |||
} | |||
} | |||
#pragma unroll | |||
for (int f_h = 0; f_h < FilterTileConfig::unroll_h; ++f_h) { | |||
#pragma unroll | |||
for (int f_w = 0; f_w < t2_flt_unroll_w - 1; ++f_w) { | |||
int flt_offset = | |||
(fh + f_h) % FilterTileCount::smem_h * FilterTileCount::smem_w + | |||
f_w * 2; | |||
reg_flt[0][f_h * t2_flt_unroll_w + f_w] = | |||
*reinterpret_cast<T2*>(smem_flt_ptr + flt_offset); | |||
if (f_w > 0) { | |||
reg_flt[1][f_h * t2_flt_unroll_w + f_w] = | |||
T2{reg_flt[0][f_h * t2_flt_unroll_w + f_w - 1].y, | |||
reg_flt[0][f_h * t2_flt_unroll_w + f_w].x}; | |||
} else { | |||
reg_flt[1][f_h * t2_flt_unroll_w + f_w] = | |||
T2{0.0, reg_flt[0][f_h * t2_flt_unroll_w + f_w].x}; | |||
} | |||
} | |||
reg_flt[0][f_h * t2_flt_unroll_w + t2_flt_unroll_w - 1] = T2{0.0, 0.0}; | |||
reg_flt[1][f_h * t2_flt_unroll_w + t2_flt_unroll_w - 1] = | |||
T2{reg_flt[0][f_h * t2_flt_unroll_w + t2_flt_unroll_w - 2].y, 0.0}; | |||
} | |||
#pragma unroll | |||
for (int inner_fh = 0; inner_fh < FilterTileConfig::unroll_h; ++inner_fh) { | |||
#pragma unroll | |||
for (int oh = 0; oh < OutTileConfig::unroll_h; ++oh) { | |||
#pragma unroll | |||
for (int fw = 0; fw < t2_flt_unroll_w; ++fw) { | |||
#pragma unroll | |||
for (int ow = 0; ow < OutTileConfig::unroll_w; ++ow) { | |||
sum[oh * t2_out_unroll_w + ow] = megdnn::cuda::fma2( | |||
reg_flt[ow * stride_w % 2] | |||
[inner_fh * t2_flt_unroll_w + fw], | |||
reg_src[(inner_fh + oh) * t2_src_unroll_w + fw + | |||
ow * stride_w / 2], | |||
sum[oh * t2_out_unroll_w + ow]); | |||
} | |||
} | |||
} | |||
} | |||
__syncthreads(); | |||
gl2sh_src.commit(); | |||
gl2sh_flt.commit(); | |||
gl2sh_src.iter_forward(); | |||
gl2sh_flt.iter_forward(); | |||
__syncthreads(); | |||
} | |||
for (int o = 0; o < OutTileConfig::unroll_size; ++o) { | |||
for (int i = 1; i < ThreadConfig::thread_x; i = i << 1) { | |||
sum[o].x += __shfl_xor(sum[o].x, i, 32); | |||
sum[o].y += __shfl_xor(sum[o].y, i, 32); | |||
} | |||
} | |||
if (threadIdx.x == 0) { | |||
#pragma unroll | |||
for (int i = 0; i < OutTileConfig::unroll_h; ++i) { | |||
int out_h_idx = out_base_h_idx + i; | |||
if (out_h_idx < param.out_h) { | |||
#pragma unroll | |||
for (int j = 0; j < OutTileConfig::unroll_w; ++j) { | |||
int out_w_idx = out_start_w + j; | |||
if (out_w_idx >= param.out_w) | |||
return; | |||
out_base_ptr[out_h_idx * param.out_w + out_w_idx] = __float2half( | |||
sum[i * OutTileConfig::unroll_w + j].x + | |||
sum[i * OutTileConfig::unroll_w + j].y); | |||
} | |||
} | |||
} | |||
} | |||
} | |||
#endif | |||
template <typename ConvTrait, DepthwiseConv2dDirection kDirection> | |||
__global__ void DepthwiseConv2dGPUKernelNCHW( | |||
const Param param, const float* input, const float* filter, float* output) { | |||
using T = float; | |||
using T2 = float2; | |||
using ThreadConfig = typename ConvTrait::ThreadConfig; | |||
using SrcTileConfig = typename ConvTrait::SrcTileConfig; | |||
using FilterTileConfig = typename ConvTrait::FilterTileConfig; | |||
using OutTileConfig = typename ConvTrait::OutTileConfig; | |||
using SrcTileCount = typename ConvTrait::SrcTileCount; | |||
using FilterTileCount = typename ConvTrait::FilterTileCount; | |||
using SrcGlobal2ShareVisitor = typename ConvTrait::SrcGlobal2ShareVisitor; | |||
using FilterGlobal2ShareVisitor = typename ConvTrait::FilterGlobal2ShareVisitor; | |||
const bool is_fwd = (kDirection == DepthwiseConv2dDirection::DIRECTION_FORWARD); | |||
int off_ochannel = blockIdx.x, off_obw = blockIdx.y, off_obh = blockIdx.z, | |||
off_oh = threadIdx.y, off_ow = threadIdx.x; | |||
extern __shared__ __align__(8) unsigned char smem[]; | |||
static_assert(sizeof(T) <= 8, "Insufficient alignment detected"); | |||
T* smem_src = reinterpret_cast<T*>(smem); | |||
T* smem_flt = reinterpret_cast<T*>(&smem_src[SrcTileCount::smem_size]); | |||
int stride_h = is_fwd ? param.stride_h : 1; | |||
int stride_w = is_fwd ? param.stride_w : 1; | |||
int off_ichannel = off_ochannel / param.chl_mul, | |||
off_fchannel = off_ichannel % param.src_chl, | |||
out_start_h = off_obh * OutTileConfig::block_h, | |||
out_start_w = off_obw * OutTileConfig::block_w, | |||
src_start_h = out_start_h * stride_h - param.pad_h, | |||
src_start_w = out_start_w * stride_w - param.pad_w, | |||
out_base_h_idx = out_start_h + off_oh * OutTileConfig::unroll_h; | |||
T* smem_src_ptr = smem_src + off_ow * FilterTileConfig::unroll_w; | |||
T* smem_flt_ptr = smem_flt + off_ow * FilterTileConfig::unroll_w; | |||
T* out_base_ptr = output + off_ochannel * param.out_h * param.out_w; | |||
SrcGlobal2ShareVisitor gl2sh_src = { | |||
smem_src, | |||
param.src_w, | |||
is_fwd ? src_start_h | |||
: src_start_h - (param.out_h / 2 + param.flt_h / 2 - param.pad_h - | |||
param.src_h * param.stride_h / 2), | |||
is_fwd ? src_start_w | |||
: src_start_w - (param.out_w / 2 + param.flt_w / 2 - param.pad_w - | |||
param.src_w * param.stride_w / 2), | |||
is_fwd ? param.src_h : param.src_h * param.stride_h, | |||
is_fwd ? param.src_w : param.src_w * param.stride_w, | |||
is_fwd ? 1 : param.stride_h, | |||
is_fwd ? 1 : param.stride_w}; | |||
FilterGlobal2ShareVisitor gl2sh_flt = {smem_flt, | |||
param.flt_w, | |||
is_fwd ? 0 : param.flt_h - 2, | |||
0, | |||
param.flt_h, | |||
param.flt_w, | |||
1, | |||
1}; | |||
gl2sh_src.g_ptr = input + off_ichannel * param.src_h * param.src_w; | |||
gl2sh_flt.g_ptr = filter + off_fchannel * param.flt_h * param.flt_w; | |||
gl2sh_src.first_copy(); | |||
gl2sh_flt.first_copy(); | |||
__syncthreads(); | |||
T reg_src[SrcTileConfig::unroll_h * SrcTileConfig::unroll_w], | |||
reg_flt[FilterTileConfig::unroll_h * FilterTileConfig::unroll_w]; | |||
T sum[OutTileConfig::unroll_size] = {0.0}; | |||
for (int fh = 0; fh < param.flt_h; fh += FilterTileConfig::unroll_h) { | |||
gl2sh_src.copy(); | |||
gl2sh_flt.copy(); | |||
#pragma unroll | |||
for (int s_h = 0; s_h < SrcTileConfig::unroll_h; ++s_h) { | |||
#pragma unroll | |||
for (int s_w = 0; s_w < SrcTileConfig::unroll_w; ++s_w) { | |||
reg_src[s_h * SrcTileConfig::unroll_w + s_w] = smem_src_ptr | |||
[(off_oh * stride_h + fh + s_h) % SrcTileCount::smem_h * | |||
SrcTileCount::smem_w + | |||
s_w]; | |||
} | |||
} | |||
#pragma unroll | |||
for (int f_h = 0; f_h < FilterTileConfig::unroll_h; ++f_h) { | |||
#pragma unroll | |||
for (int f_w = 0; f_w < FilterTileConfig::unroll_w; ++f_w) { | |||
reg_flt[f_h * FilterTileConfig::unroll_w + f_w] = smem_flt_ptr | |||
[(fh + f_h) % FilterTileCount::smem_h * | |||
FilterTileCount::smem_w + | |||
f_w]; | |||
} | |||
} | |||
#pragma unroll | |||
for (int inner_fh = 0; inner_fh < FilterTileConfig::unroll_h; ++inner_fh) { | |||
#pragma unroll | |||
for (int oh = 0; oh < OutTileConfig::unroll_h; ++oh) { | |||
#pragma unroll | |||
for (int fw = 0; fw < FilterTileConfig::unroll_w; ++fw) { | |||
#pragma unroll | |||
for (int ow = 0; ow < OutTileConfig::unroll_w; ++ow) { | |||
sum[oh * OutTileConfig::unroll_w + ow] += | |||
reg_flt[inner_fh * FilterTileConfig::unroll_w + fw] * | |||
reg_src[(inner_fh + oh) * SrcTileConfig::unroll_w + fw + | |||
ow * stride_w]; | |||
} | |||
} | |||
} | |||
} | |||
__syncthreads(); | |||
gl2sh_src.commit(); | |||
gl2sh_flt.commit(); | |||
gl2sh_src.iter_forward(); | |||
gl2sh_flt.iter_forward(); | |||
__syncthreads(); | |||
} | |||
for (int o = 0; o < OutTileConfig::unroll_size; ++o) { | |||
for (int i = 1; i < ThreadConfig::thread_x; i = i << 1) { | |||
sum[o] += __shfl_xor(sum[o], i, 32); | |||
} | |||
} | |||
if (threadIdx.x == 0) { | |||
#pragma unroll | |||
for (int i = 0; i < OutTileConfig::unroll_h; ++i) { | |||
int out_h_idx = out_base_h_idx + i; | |||
if (out_h_idx < param.out_h) { | |||
#pragma unroll | |||
for (int j = 0; j < OutTileConfig::unroll_w; ++j) { | |||
int out_w_idx = out_start_w + j; | |||
if (out_w_idx >= param.out_w) | |||
return; | |||
out_base_ptr[out_h_idx * param.out_w + out_w_idx] = | |||
sum[i * OutTileConfig::unroll_w + j]; | |||
} | |||
} | |||
} | |||
} | |||
} | |||
template <typename ConvTrait, DepthwiseConv2dDirection kDirection> | |||
__global__ void DepthwiseConv2dGPUKernelNCHWC32( | |||
const Param param, const float* input, const float* filter, float* output) { | |||
using T = float; | |||
using T2 = float2; | |||
using ThreadConfig = typename ConvTrait::ThreadConfig; | |||
using SrcTileConfig = typename ConvTrait::SrcTileConfig; | |||
using FilterTileConfig = typename ConvTrait::FilterTileConfig; | |||
using OutTileConfig = typename ConvTrait::OutTileConfig; | |||
using SrcTileCount = typename ConvTrait::SrcTileCount; | |||
using FilterTileCount = typename ConvTrait::FilterTileCount; | |||
using SrcGlobal2ShareVisitor = typename ConvTrait::SrcGlobal2ShareVisitor; | |||
using FilterGlobal2ShareVisitor = typename ConvTrait::FilterGlobal2ShareVisitor; | |||
const bool is_fwd = (kDirection == DepthwiseConv2dDirection::DIRECTION_FORWARD); | |||
int off_ochannel = blockIdx.x, off_obw = blockIdx.y, off_obh = blockIdx.z, | |||
off_oh = threadIdx.y, off_ow = threadIdx.x; | |||
extern __shared__ __align__(8) unsigned char smem[]; | |||
static_assert(sizeof(T) <= 8, "Insufficient alignment detected"); | |||
T* smem_src = reinterpret_cast<T*>(smem); | |||
T* smem_flt = reinterpret_cast<T*>(&smem_src[SrcTileCount::smem_size]); | |||
int stride_h = is_fwd ? param.stride_h : 1; | |||
int stride_w = is_fwd ? param.stride_w : 1; | |||
int off_ichannel = off_ochannel / param.chl_mul, | |||
off_fchannel = off_ichannel % param.src_chl, | |||
out_start_h = off_obh * OutTileConfig::block_h, | |||
out_start_w = off_obw * OutTileConfig::block_w, | |||
src_start_h = out_start_h * stride_h - param.pad_h, | |||
src_start_w = out_start_w * stride_w - param.pad_w, | |||
out_base_h_idx = out_start_h + off_oh * OutTileConfig::unroll_h; | |||
T* smem_src_ptr = smem_src + off_ow * FilterTileConfig::unroll_w; | |||
T* smem_flt_ptr = smem_flt + off_ow * FilterTileConfig::unroll_w; | |||
T* out_base_ptr = output + off_ochannel * param.out_h * param.out_w; | |||
SrcGlobal2ShareVisitor gl2sh_src = { | |||
smem_src, | |||
param.src_w, | |||
is_fwd ? src_start_h | |||
: src_start_h - (param.out_h / 2 + param.flt_h / 2 - param.pad_h - | |||
param.src_h * param.stride_h / 2), | |||
is_fwd ? src_start_w | |||
: src_start_w - (param.out_w / 2 + param.flt_w / 2 - param.pad_w - | |||
param.src_w * param.stride_w / 2), | |||
is_fwd ? param.src_h : param.src_h * param.stride_h, | |||
is_fwd ? param.src_w : param.src_w * param.stride_w, | |||
is_fwd ? 1 : param.stride_h, | |||
is_fwd ? 1 : param.stride_w}; | |||
FilterGlobal2ShareVisitor gl2sh_flt = {smem_flt, | |||
param.flt_w, | |||
is_fwd ? 0 : param.flt_h - 2, | |||
0, | |||
param.flt_h, | |||
param.flt_w, | |||
1, | |||
1}; | |||
gl2sh_src.g_ptr = input + off_ichannel * param.src_h * param.src_w; | |||
gl2sh_flt.g_ptr = filter + off_fchannel * param.flt_h * param.flt_w; | |||
gl2sh_src.first_copy(); | |||
gl2sh_flt.first_copy(); | |||
__syncthreads(); | |||
T reg_src[SrcTileConfig::unroll_h * SrcTileConfig::unroll_w], | |||
reg_flt[FilterTileConfig::unroll_h * FilterTileConfig::unroll_w]; | |||
T sum[OutTileConfig::unroll_size] = {0.0}; | |||
for (int fh = 0; fh < param.flt_h; fh += FilterTileConfig::unroll_h) { | |||
gl2sh_src.copy(); | |||
gl2sh_flt.copy(); | |||
#pragma unroll | |||
for (int s_h = 0; s_h < SrcTileConfig::unroll_h; ++s_h) { | |||
#pragma unroll | |||
for (int s_w = 0; s_w < SrcTileConfig::unroll_w; ++s_w) { | |||
reg_src[s_h * SrcTileConfig::unroll_w + s_w] = smem_src_ptr | |||
[(off_oh * stride_h + fh + s_h) % SrcTileCount::smem_h * | |||
SrcTileCount::smem_w + | |||
s_w]; | |||
} | |||
} | |||
#pragma unroll | |||
for (int f_h = 0; f_h < FilterTileConfig::unroll_h; ++f_h) { | |||
#pragma unroll | |||
for (int f_w = 0; f_w < FilterTileConfig::unroll_w; ++f_w) { | |||
reg_flt[f_h * FilterTileConfig::unroll_w + f_w] = smem_flt_ptr | |||
[(fh + f_h) % FilterTileCount::smem_h * | |||
FilterTileCount::smem_w + | |||
f_w]; | |||
} | |||
} | |||
#pragma unroll | |||
for (int inner_fh = 0; inner_fh < FilterTileConfig::unroll_h; ++inner_fh) { | |||
#pragma unroll | |||
for (int oh = 0; oh < OutTileConfig::unroll_h; ++oh) { | |||
#pragma unroll | |||
for (int fw = 0; fw < FilterTileConfig::unroll_w; ++fw) { | |||
#pragma unroll | |||
for (int ow = 0; ow < OutTileConfig::unroll_w; ++ow) { | |||
sum[oh * OutTileConfig::unroll_w + ow] += | |||
reg_flt[inner_fh * FilterTileConfig::unroll_w + fw] * | |||
reg_src[(inner_fh + oh) * SrcTileConfig::unroll_w + fw + | |||
ow * stride_w]; | |||
} | |||
} | |||
} | |||
} | |||
__syncthreads(); | |||
gl2sh_src.commit(); | |||
gl2sh_flt.commit(); | |||
gl2sh_src.iter_forward(); | |||
gl2sh_flt.iter_forward(); | |||
__syncthreads(); | |||
} | |||
for (int o = 0; o < OutTileConfig::unroll_size; ++o) { | |||
for (int i = 1; i < ThreadConfig::thread_x; i = i << 1) { | |||
sum[o] += __shfl_xor(sum[o], i, 32); | |||
} | |||
} | |||
if (threadIdx.x == 0) { | |||
#pragma unroll | |||
for (int i = 0; i < OutTileConfig::unroll_h; ++i) { | |||
int out_h_idx = out_base_h_idx + i; | |||
if (out_h_idx < param.out_h) { | |||
#pragma unroll | |||
for (int j = 0; j < OutTileConfig::unroll_w; ++j) { | |||
int out_w_idx = out_start_w + j; | |||
if (out_w_idx >= param.out_w) | |||
return; | |||
out_base_ptr[out_h_idx * param.out_w + out_w_idx] = | |||
sum[i * OutTileConfig::unroll_w + j]; | |||
} | |||
} | |||
} | |||
} | |||
} | |||
template < | |||
typename T, typename T2, DepthwiseConv2dDirection kDirection, int unroll_fw, | |||
int unroll_ow, int stride> | |||
void LaunchDepthwiseConv2dGPU( | |||
const Param& param, const T* input, const T* filter, T* output, | |||
cudaStream_t stream) { | |||
static int const unroll_oh = 1, unroll_fh = 1; | |||
using FilterTileConfig = FilterTileConfig<unroll_fh, unroll_fw>; | |||
using ThreadConfig = ThreadConfig<4, 32>; | |||
using OutTileConfig = OutTileConfig<ThreadConfig, unroll_oh, unroll_ow>; | |||
using IConvTrait = ConvTrait< | |||
T, kDirection, ThreadConfig, OutTileConfig, FilterTileConfig, stride, | |||
stride>; | |||
using SrcTileCount = typename IConvTrait::SrcTileCount; | |||
using FilterTileCount = typename IConvTrait::FilterTileCount; | |||
dim3 block(ThreadConfig::thread_x, ThreadConfig::thread_y); | |||
dim3 grid; | |||
grid.x = param.batch * param.src_chl * param.chl_mul; | |||
grid.y = DIVUP(param.out_w, OutTileConfig::block_w); | |||
grid.z = DIVUP(param.out_h, OutTileConfig::block_h); | |||
const int shared_storage = | |||
(SrcTileCount::smem_size + FilterTileCount::smem_size) * sizeof(T); | |||
void (*kernel)(const Param, const T*, const T*, T*); | |||
if (param.is_compute_deafult) { | |||
kernel = DepthwiseConv2dGPUKernelNCHW<IConvTrait, kDirection>; | |||
} else { | |||
kernel = DepthwiseConv2dGPUKernelNCHWC32<IConvTrait, kDirection>; | |||
} | |||
kernel<<<grid, block, shared_storage, stream>>>(param, input, filter, output); | |||
after_kernel_launch(); | |||
} | |||
#define INSTANCE_AB(type1, type2, a, b, direction) \ | |||
if (param.out_w > b * 4) { \ | |||
if (direction == DepthwiseConv2dDirection::DIRECTION_BACKWARD || \ | |||
(param.stride_h == 1 && param.stride_w == 1)) { \ | |||
LaunchDepthwiseConv2dGPU<type1, type2, direction, a + 2, b + 1, 1>( \ | |||
param, src, flt, dst, stream); \ | |||
} else if (param.stride_h == 2 && param.stride_w == 2) { \ | |||
LaunchDepthwiseConv2dGPU<type1, type2, direction, a + 2, b + 1, 2>( \ | |||
param, src, flt, dst, stream); \ | |||
} \ | |||
} | |||
#define INSTANCE_A(type1, type2, a, direction) \ | |||
if (param.flt_w > a * 4) { \ | |||
INSTANCE_AB(type1, type2, a, 15, direction) \ | |||
else INSTANCE_AB(type1, type2, a, 14, direction) else INSTANCE_AB(type1, type2, a, 13, direction) else INSTANCE_AB(type1, type2, a, 12, direction) else INSTANCE_AB(type1, type2, a, 11, direction) else INSTANCE_AB(type1, type2, a, 10, direction) else INSTANCE_AB( \ | |||
type1, type2, \ | |||
a, 9, direction) else INSTANCE_AB(type1, type2, a, 8, direction) else INSTANCE_AB(type1, type2, a, 7, direction) else INSTANCE_AB(type1, type2, a, 6, direction) else INSTANCE_AB(type1, type2, a, 5, direction) else INSTANCE_AB(type1, type2, a, 4, direction) else INSTANCE_AB(type1, type2, a, 3, direction) else INSTANCE_AB(type1, type2, a, 2, direction) else INSTANCE_AB(type1, type2, a, 1, direction) else INSTANCE_AB(type1, type2, a, 0, direction) \ | |||
} | |||
#define INSTANCE(type1, type2, direction) \ | |||
INSTANCE_A(type1, type2, 6, direction) \ | |||
else INSTANCE_A(type1, type2, 4, direction) else INSTANCE_A( \ | |||
type1, type2, 2, direction) else INSTANCE_A(type1, type2, 0, direction) | |||
} // anonymous namespace |
@@ -0,0 +1,56 @@ | |||
/** | |||
* \file dnn/src/cuda/conv_bias/chanwise/fwd_depthwise_large_filter.cu | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#include "cuda.h" | |||
#include "cuda_fp16.h" | |||
#include "src/cuda/conv_bias/chanwise/kern.cuh" | |||
#include "src/cuda/conv_bias/chanwise/kern_helper.cuh" | |||
#include "src/cuda/conv_bias/chanwise/launch_config.cuh" | |||
#include "src/cuda/fp16_help.cuh" | |||
using namespace megdnn; | |||
using namespace cuda; | |||
using namespace conv_bias; | |||
using namespace chanwise; | |||
#include "src/cuda/conv_bias/chanwise/depthwise_large_filter_algo.cuh" | |||
namespace megdnn { | |||
namespace cuda { | |||
namespace conv_bias { | |||
namespace chanwise { | |||
// =====================================fwd===================================== | |||
#define check | |||
template <> | |||
void run_fwd_depthwise_large_filter( | |||
float* dst, const float* src, const float* flt, const Param& param, | |||
cudaStream_t stream) { | |||
INSTANCE(float, float2, DepthwiseConv2dDirection::DIRECTION_FORWARD) | |||
} | |||
#if CUDA_VERSION >= 9000 | |||
template <> | |||
void run_fwd_depthwise_large_filter( | |||
__half* dst, const __half* src, const __half* flt, const Param& param, | |||
cudaStream_t stream) { | |||
INSTANCE(__half, __half2, DepthwiseConv2dDirection::DIRECTION_FORWARD) | |||
} | |||
#endif | |||
} // namespace chanwise | |||
} // namespace conv_bias | |||
} // namespace cuda | |||
} // namespace megdnn | |||
// vim: syntax=cuda.doxygen |
@@ -27,8 +27,10 @@ namespace chanwise { | |||
struct Param { | |||
uint32_t batch, src_chl, src_h, src_w, chl_mul, flt_h, flt_w, out_h, out_w, pad_h, | |||
pad_w, stride_h, stride_w, dilation_h, dilation_w; | |||
bool is_compute_deafult; | |||
#if MEGDNN_CC_HOST | |||
static Param from_fwd_args(const BiasForwardSizeArgs& args) { | |||
static Param from_fwd_args( | |||
const BiasForwardSizeArgs& args, bool is_compute_deafult_ = true) { | |||
#define U(v) static_cast<uint32_t>(v) | |||
auto&& src = args.src_layout->shape; | |||
auto&& dst = args.dst_layout->shape; | |||
@@ -42,11 +44,12 @@ struct Param { | |||
hw_pos = 1; | |||
} | |||
return { | |||
U(src[0]), U(src[c_pos]), U(src[hw_pos]), | |||
U(src[hw_pos + 1]), U(fm.ocpg), U(fm.spatial[0]), | |||
U(fm.spatial[1]), U(dst[hw_pos]), U(dst[hw_pos + 1]), | |||
U(fm.padding[0]), U(fm.padding[1]), U(fm.stride[0]), | |||
U(fm.stride[1]), U(fm.dilation[0]), U(fm.dilation[1]), | |||
U(src[0]), U(src[c_pos]), U(src[hw_pos]), | |||
U(src[hw_pos + 1]), U(fm.ocpg), U(fm.spatial[0]), | |||
U(fm.spatial[1]), U(dst[hw_pos]), U(dst[hw_pos + 1]), | |||
U(fm.padding[0]), U(fm.padding[1]), U(fm.stride[0]), | |||
U(fm.stride[1]), U(fm.dilation[0]), U(fm.dilation[1]), | |||
is_compute_deafult_, | |||
}; | |||
#undef U | |||
} | |||
@@ -61,6 +64,10 @@ template <typename T> | |||
void run_fwd_small( | |||
T* dst, const T* src, const T* flt, const Param& param, cudaStream_t stream); | |||
template <typename T> | |||
void run_fwd_depthwise_large_filter( | |||
T* dst, const T* src, const T* flt, const Param& param, cudaStream_t stream); | |||
// implemented in fwd_8x8x32.cu | |||
void run_fwd_8x8x32( | |||
int32_t* dst, const int8_t* src, const int8_t* flt, const Param& param, | |||
@@ -74,13 +74,18 @@ cutlass::conv::ConvType convert_conv_type(Base::ConvType conv_type) { | |||
return cutlass::conv::ConvType::kLocal; | |||
case Base::ConvType::kLocalShare: | |||
return cutlass::conv::ConvType::kLocalShare; | |||
case Base::ConvType::kDepthwiseConvolution: | |||
return cutlass::conv::ConvType::kDepthwiseConvolution; | |||
default: | |||
megdnn_assert(0, "invalid conv type"); | |||
} | |||
} | |||
NumericTypeID convert_dtype(DTypeEnum dtype) { | |||
switch (dtype) { | |||
NumericTypeID convert_dtype(DType dtype) { | |||
// just make convolution with no bias happy | |||
if (!dtype.valid()) | |||
return NumericTypeID::kF32; | |||
switch (dtype.enumv()) { | |||
case DTypeEnum::Float32: | |||
return NumericTypeID::kF32; | |||
case DTypeEnum::Float16: | |||
@@ -100,6 +105,21 @@ NumericTypeID convert_dtype(DTypeEnum dtype) { | |||
} | |||
} | |||
NumericTypeID get_accumulator_dtype( | |||
DType dtype, const param::ConvBias::ComputeMode comp_mode) { | |||
if (dtype.category() == DTypeCategory::QUANTIZED) { | |||
return NumericTypeID::kS32; | |||
} else { | |||
megdnn_assert(dtype.category() == DTypeCategory::FLOAT); | |||
if (comp_mode == param::ConvBias::ComputeMode::DEFAULT) { | |||
return convert_dtype(dtype); | |||
} else { | |||
megdnn_assert(comp_mode == param::ConvBias::ComputeMode::FLOAT32); | |||
return NumericTypeID::kF32; | |||
} | |||
} | |||
} | |||
struct LayoutPack { | |||
LayoutTypeID src; | |||
LayoutTypeID filter; | |||
@@ -149,6 +169,9 @@ LayoutPack get_layout_pack(const param::ConvBias::Format format, int access_type | |||
default: | |||
megdnn_assert(0, "invalid access_type"); | |||
} | |||
case Format::NCHW: | |||
return {LayoutTypeID::kTensorNCHW, LayoutTypeID::kTensorNCHW, | |||
LayoutTypeID::kTensorNCHW, LayoutTypeID::kTensorNCHW}; | |||
default: | |||
megdnn_assert(0, "invalid format"); | |||
} | |||
@@ -177,6 +200,94 @@ EpilogueType get_epilogue_type(const param::ConvBias::NonlineMode mode, bool cla | |||
megdnn_assert(0, "invalid nonlinear mode"); | |||
} | |||
std::pair<int, int> get_tensor_alignment( | |||
const param::ConvBias::Format format, const TensorLayout& src, | |||
const TensorLayout& filter, const Base::AlgoParam& algo_param, | |||
bool is_chanwise) { | |||
int alignment_src = 0; | |||
int alignment_filter = 0; | |||
using Format = param::ConvBias::Format; | |||
// get tensor alignment for tensor op operations | |||
// for tensor op operations, the alignment is determined by the size of a vector | |||
auto get_tensor_alignment_tensor_op = [&]() { | |||
switch (format) { | |||
/// case int8 | |||
case Format::NCHW32: | |||
case Format::NCHW32_NCHW4: | |||
alignment_src = 16; | |||
alignment_filter = 16; | |||
break; | |||
/// case int4 or uint4 | |||
case Format::NCHW64: | |||
alignment_src = 32; | |||
alignment_filter = 32; | |||
break; | |||
case Format::NHWC: | |||
alignment_src = alignment_filter = algo_param.access_size; | |||
break; | |||
default: | |||
megdnn_throw("invalid format"); | |||
}; | |||
}; | |||
// get tensor alignment for dot product operations | |||
// for integer dot product operations, alignment src is always 4 | |||
// and the alignment filter is determined by the threadblock shape | |||
auto get_tensor_alignment_dp4a = [&]() { | |||
megdnn_assert( | |||
format == Format::NCHW4 || format == Format::NCHW4_NCHW || | |||
format == Format::NCHW4_NHWC || format == Format::NCHW4_NCHW32); | |||
alignment_src = 4; | |||
// determine alignment filter | |||
constexpr int warp_size = 32; | |||
int threads = warp_size * algo_param.threadblock_m * algo_param.threadblock_n * | |||
algo_param.threadblock_k / | |||
(algo_param.warp_m * algo_param.warp_n * algo_param.warp_k); | |||
int threadblock_loads = | |||
filter.dtype.size(algo_param.threadblock_m * algo_param.threadblock_k); | |||
int load_per_thread = threadblock_loads / threads; | |||
if (load_per_thread >= 16) | |||
alignment_filter = 16; | |||
else if (load_per_thread >= 8) | |||
alignment_filter = 8; | |||
else { | |||
megdnn_assert(load_per_thread >= 4); | |||
alignment_filter = 4; | |||
} | |||
}; | |||
// get tensor alignment for depthwise convolution | |||
auto get_tensor_alignment_dwconv2d_nchw = [&]() { | |||
alignment_filter = 1; | |||
size_t wi = src.dtype.size(src[3]); // width extent in bytes | |||
for (size_t candidate : {16, 4, 2}) { | |||
if (wi % candidate == 0) { | |||
alignment_src = candidate; | |||
break; | |||
} | |||
} | |||
alignment_src /= src.dtype.size(1); | |||
}; | |||
/// TODO: need a better way to check whether tensor core instruction is used | |||
if (format == Format::NCHW32 || format == Format::NCHW32_NCHW4 || | |||
format == Format::NCHW64 || format == Format::NCHW64 || | |||
format == Format::NHWC) { | |||
get_tensor_alignment_tensor_op(); | |||
} else if ( | |||
format == Format::NCHW4 || format == Format::NCHW4_NCHW || | |||
format == Format::NCHW4_NHWC || format == Format::NCHW4_NCHW32) { | |||
get_tensor_alignment_dp4a(); | |||
} else { | |||
/// the following is used for depthwise convolution | |||
megdnn_assert(format == Format::NCHW && is_chanwise); | |||
get_tensor_alignment_dwconv2d_nchw(); | |||
} | |||
megdnn_assert(alignment_src >= 1 && alignment_filter >= 1); | |||
return {alignment_src, alignment_filter}; | |||
} | |||
} // namespace | |||
const Operation* ConvBiasForwardImpl::AlgoCutlassConvolutionBase::get_cutlass_conv_op( | |||
@@ -185,23 +296,36 @@ const Operation* ConvBiasForwardImpl::AlgoCutlassConvolutionBase::get_cutlass_co | |||
auto&& param = args.opr->param(); | |||
auto layouts = get_layout_pack(param.format, m_algo_param.access_size); | |||
auto epilogue_type = get_epilogue_type( | |||
param.nonlineMode, args.dst_layout->dtype.enumv() != DTypeEnum::Float32); | |||
param.nonlineMode, | |||
args.dst_layout->dtype.category() != DTypeCategory::FLOAT); | |||
cutlass::conv::SpecialOptimizeDesc special_optimization = | |||
(use_conv_filter_unity_opt) | |||
? cutlass::conv::SpecialOptimizeDesc::CONV_FILTER_UNITY | |||
: cutlass::conv::SpecialOptimizeDesc::NONE; | |||
int alignment_src, alignment_filter; | |||
auto&& fm = args.filter_meta; | |||
bool is_chanwise = param.sparse == param::ConvBias::Sparse::GROUP && fm.icpg == 1 && | |||
fm.ocpg == 1; | |||
std::tie(alignment_src, alignment_filter) = get_tensor_alignment( | |||
param.format, *args.src_layout, *args.filter_layout, m_algo_param, | |||
is_chanwise); | |||
auto accumulator_dtype = | |||
get_accumulator_dtype(args.src_layout->dtype, param.compute_mode); | |||
ConvolutionKey key{ | |||
convert_conv_op(conv_op), | |||
convert_dtype(args.src_layout->dtype.enumv()), | |||
convert_dtype(args.src_layout->dtype), | |||
layouts.src, | |||
convert_dtype(args.filter_layout->dtype.enumv()), | |||
convert_dtype(args.filter_layout->dtype), | |||
layouts.filter, | |||
convert_dtype(args.dst_layout->dtype.enumv()), | |||
convert_dtype(args.dst_layout->dtype), | |||
layouts.dst, | |||
convert_dtype(args.bias_layout->dtype.enumv()), | |||
convert_dtype(args.bias_layout->dtype), | |||
layouts.bias, | |||
accumulator_dtype, | |||
convert_conv_type(conv_type), | |||
m_algo_param.threadblock_m, | |||
m_algo_param.threadblock_n, | |||
@@ -215,6 +339,8 @@ const Operation* ConvBiasForwardImpl::AlgoCutlassConvolutionBase::get_cutlass_co | |||
epilogue_type, | |||
m_algo_param.stage, | |||
special_optimization, | |||
alignment_src, | |||
alignment_filter, | |||
without_shared_load}; | |||
return Singleton::get().operation_table.find_op(key); | |||
@@ -227,13 +353,16 @@ void ConvBiasForwardImpl::AlgoCutlassConvolutionBase::execute_cutlass_conv_op( | |||
size_t pw, size_t sh, size_t sw, size_t dh, size_t dw, const void* alpha, | |||
const void* beta, const void* gamma, const void* delta, const void* theta, | |||
const void* threshold, const void* dst_scale, cudaStream_t stream, | |||
const void* extra_param) const { | |||
const void* extra_param, size_t groups) const { | |||
// gcc prints warnings when size_t values are implicitly narrowed to int | |||
cutlass::conv::Conv2dProblemSize problem_size{ | |||
int(n), int(hi), int(wi), int(ci), | |||
int(co), int(fh), int(fw), int(ho), | |||
int(wo), int(ph), int(pw), int(sh), | |||
int(sw), int(dh), int(dw), cutlass::conv::Mode::kCrossCorrelation}; | |||
int(n), int(hi), int(wi), int(ci), | |||
int(co), int(fh), int(fw), int(ho), | |||
int(wo), int(ph), int(pw), int(sh), | |||
int(sw), int(dh), int(dw), cutlass::conv::Mode::kCrossCorrelation, | |||
1, // split k slices, always 1 | |||
int(groups), // groups | |||
}; | |||
ConvolutionArguments conv_args{ | |||
problem_size, src, filter, bias, z, dst, alpha, | |||
@@ -0,0 +1,111 @@ | |||
/** | |||
* \file dnn/src/cuda/conv_bias/depthwise_large_filter.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#include "src/cuda/conv_bias/chanwise/depthwise_large_filter.cuh" | |||
#include "src/common/conv_bias.h" | |||
#include "src/cuda/conv_bias/algo.h" | |||
#include "src/cuda/conv_bias/chanwise/kern.cuh" | |||
#include "src/cuda/utils.h" | |||
using namespace megdnn; | |||
using namespace cuda; | |||
using namespace conv_bias; | |||
namespace { | |||
inline bool is_available_depthwise_large_filter(const chanwise::Param& param) { | |||
if ((param.stride_h == 1 && param.stride_w == 1) || | |||
(param.stride_h == 2 && param.stride_w == 2)) { | |||
auto&& device_prop = cuda::current_device_prop(); | |||
static int const unroll_oh = 1, unroll_fh = 1; | |||
CHECK(FWD) | |||
} | |||
return false; | |||
} | |||
} // anonymous namespace | |||
bool ConvBiasForwardImpl::AlgoDepthwiseLargeFilter::is_available( | |||
const SizeArgs& args) const { | |||
if (!args.src_layout->is_contiguous() || !args.dst_layout->is_contiguous()) { | |||
return false; | |||
} | |||
if (args.src_layout->dtype != args.filter_layout->dtype && | |||
(args.src_layout->dtype != dtype::Float32() | |||
#if CUDA_VERSION >= 9000 | |||
|| args.src_layout->dtype != dtype::Float16() | |||
#endif | |||
)) { | |||
return false; | |||
} | |||
if (args.z_layout->ndim > 0) | |||
return false; | |||
auto param = chanwise::Param::from_fwd_args( | |||
args, args.opr->param().compute_mode == Param::ComputeMode::DEFAULT); | |||
auto&& fm = args.filter_meta; | |||
return fm.group > 1 && args.filter_meta.format == Param::Format::NCHW && | |||
args.src_layout->dtype.category() == DTypeCategory::FLOAT && | |||
args.opr->param().compute_mode == Param::ComputeMode::DEFAULT && | |||
fm.spatial_ndim == 2 && fm.icpg == 1 && fm.ocpg == 1 && | |||
fm.dilation[0] == 1 && fm.dilation[1] == 1 && !fm.should_flip && | |||
is_available_depthwise_large_filter(param); | |||
} | |||
size_t ConvBiasForwardImpl::AlgoDepthwiseLargeFilter::get_workspace_in_bytes( | |||
const SizeArgs& args) const { | |||
auto dst_layout = *args.dst_layout; | |||
if (dst_layout.dtype.enumv() != args.bias_layout->dtype.enumv()) { | |||
dst_layout.dtype = DType(); | |||
args.opr->check_or_deduce_dtype_fwd( | |||
args.src_layout->dtype, args.filter_layout->dtype, dst_layout.dtype); | |||
return dst_layout.span().dist_byte(); | |||
} | |||
return 0; | |||
} | |||
void ConvBiasForwardImpl::AlgoDepthwiseLargeFilter::exec(const ExecArgs& args) const { | |||
WorkspaceBundle bundle{args.workspace.raw_ptr, {get_workspace_in_bytes(args)}}; | |||
TensorND conv_dst_tensor = *args.dst_tensor; | |||
if (args.dst_layout->dtype.enumv() != args.bias_layout->dtype.enumv()) { | |||
conv_dst_tensor = TensorND{bundle.get(0), conv_dst_tensor.layout}; | |||
conv_dst_tensor.layout.dtype = DType(); | |||
args.opr->check_or_deduce_dtype_fwd( | |||
args.src_layout->dtype, args.filter_layout->dtype, | |||
conv_dst_tensor.layout.dtype); | |||
} | |||
{ | |||
auto kparam = chanwise::Param::from_fwd_args( | |||
args, args.opr->param().compute_mode == Param::ComputeMode::DEFAULT); | |||
auto stream = cuda_stream(args.handle); | |||
switch (args.src_layout->dtype.enumv()) { | |||
case DTypeEnum::Float32: | |||
chanwise::run_fwd_depthwise_large_filter( | |||
conv_dst_tensor.ptr<float>(), args.src_tensor->ptr<float>(), | |||
args.filter_tensor->ptr<float>(), kparam, stream); | |||
break; | |||
#if CUDA_VERSION >= 9000 | |||
case DTypeEnum::Float16: | |||
chanwise::run_fwd_depthwise_large_filter( | |||
static_cast<half*>(conv_dst_tensor.raw_ptr()), | |||
static_cast<half*>(args.src_tensor->raw_ptr()), | |||
static_cast<half*>(args.filter_tensor->raw_ptr()), kparam, | |||
stream); | |||
break; | |||
#endif | |||
default: | |||
megdnn_assert_internal(0); | |||
} | |||
} | |||
handle_bias_and_nonlinear( | |||
args.handle, args.nonlinear_mode, &conv_dst_tensor, args.dst_tensor, | |||
args.bias_tensor); | |||
} | |||
// vim: syntax=cpp.doxygen |
@@ -0,0 +1,99 @@ | |||
/** | |||
* \file dnn/src/cuda/conv_bias/implicit_batched_gemm_float16_nchw_hmma.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "src/common/conv_bias.h" | |||
#include "src/cuda/conv_bias/algo.h" | |||
#include "src/cuda/convolution_helper/parameter.cuh" | |||
#include "src/cuda/utils.h" | |||
using namespace megdnn; | |||
using namespace cuda; | |||
bool ConvBiasForwardImpl::AlgoFloat16NCHWHMMAImplicitBatchedGemm::is_available( | |||
const SizeArgs& args) const { | |||
#define RETURN_IF_FALSE(stmt_) \ | |||
if (!(stmt_)) \ | |||
return false; | |||
RETURN_IF_FALSE(is_compute_capability_required(7, 0)); | |||
RETURN_IF_FALSE( | |||
args.src_layout->is_contiguous() && args.dst_layout->is_contiguous()); | |||
using Param = param::ConvBias; | |||
using Format = Param::Format; | |||
using Sparse = Param::Sparse; | |||
using Mode = Param::Mode; | |||
using NonlineMode = Param::NonlineMode; | |||
auto&& param = args.opr->param(); | |||
auto&& fm = args.filter_meta; | |||
RETURN_IF_FALSE( | |||
param.format == Format::NCHW && | |||
args.src_layout->dtype.enumv() == DTypeEnum::Float16 && | |||
args.filter_layout->dtype.enumv() == DTypeEnum::Float16 && | |||
args.dst_layout->dtype.enumv() == DTypeEnum::Float16); | |||
RETURN_IF_FALSE(param.nonlineMode != NonlineMode::SIGMOID); | |||
RETURN_IF_FALSE( | |||
args.bias_layout->ndim <= 0 || | |||
(args.bias_layout->dtype.enumv() == DTypeEnum::Float16 && | |||
check_bias_share_in_channel(*args.bias_layout, param.format))); | |||
RETURN_IF_FALSE( | |||
args.z_layout->ndim <= 0 || | |||
args.z_layout->dtype.enumv() == DTypeEnum::Float16); | |||
RETURN_IF_FALSE(param.sparse == Sparse::GROUP); | |||
RETURN_IF_FALSE(param.mode == Mode::CROSS_CORRELATION); | |||
// check if channelwise convolution | |||
RETURN_IF_FALSE(fm.icpg == 1 && fm.ocpg == 1); | |||
RETURN_IF_FALSE(param.dilate_h == 1 && param.dilate_w == 1); | |||
const auto* op = get_cutlass_conv_op( | |||
args, ConvOperator::kFprop, ConvType::kDepthwiseConvolution, false, false); | |||
RETURN_IF_FALSE(op != nullptr); | |||
return true; | |||
#undef RETURN_IF_FALSE | |||
} | |||
void ConvBiasForwardImpl::AlgoFloat16NCHWHMMAImplicitBatchedGemm::exec( | |||
const ExecArgs& args) const { | |||
auto&& param = args.opr->param(); | |||
auto&& fm = args.filter_meta; | |||
size_t n = args.src_layout->operator[](0), hi = args.src_layout->operator[](2), | |||
wi = args.src_layout->operator[](3); | |||
size_t ho = args.dst_layout->operator[](2), wo = args.dst_layout->operator[](3); | |||
size_t co = fm.group; | |||
size_t ci = co; | |||
// check if channelwise convolution | |||
megdnn_assert(fm.icpg == 1 && fm.ocpg == 1); | |||
auto&& stream = cuda_stream(args.opr->handle()); | |||
float alpha = 1.f; | |||
float beta = args.bias_layout->ndim > 0 ? 1.f : 0.f; | |||
void* bias_ptr = args.bias_layout->ndim > 0 ? args.bias_tensor->raw_ptr() : nullptr; | |||
float gamma = args.z_layout->ndim > 0 ? 1.f : 0.f; | |||
void* z_ptr = args.z_layout->ndim > 0 ? args.z_tensor->raw_ptr() : nullptr; | |||
// dummy parameters, used for quantization cases | |||
float theta = 0.f; | |||
float delta = 0.f; | |||
float threshold = 0.f; | |||
const auto* op = get_cutlass_conv_op( | |||
args, ConvOperator::kFprop, ConvType::kDepthwiseConvolution, false, false); | |||
UNPACK_CONV_PARAMETER(fm, param); | |||
MARK_USED_VAR | |||
execute_cutlass_conv_op( | |||
op, args.src_tensor->raw_ptr(), args.filter_tensor->raw_ptr(), bias_ptr, | |||
z_ptr, args.dst_tensor->raw_ptr(), nullptr, n, hi, wi, ci, co, fh, fw, ho, | |||
wo, ph, pw, sh, sw, dh, dw, &alpha, &beta, &gamma, &delta, &theta, | |||
&threshold, nullptr, stream, nullptr, fm.group); | |||
after_kernel_launch(); | |||
} | |||
// vim: syntax=cpp.doxygen |
@@ -0,0 +1,99 @@ | |||
/** | |||
* \file dnn/src/cuda/conv_bias/implicit_batched_gemm_float32_nchw_fma.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "src/common/conv_bias.h" | |||
#include "src/cuda/conv_bias/algo.h" | |||
#include "src/cuda/convolution_helper/parameter.cuh" | |||
#include "src/cuda/utils.h" | |||
using namespace megdnn; | |||
using namespace cuda; | |||
bool ConvBiasForwardImpl::AlgoFloat32NCHWFMAImplicitBatchedGemm::is_available( | |||
const SizeArgs& args) const { | |||
#define RETURN_IF_FALSE(stmt_) \ | |||
if (!(stmt_)) \ | |||
return false; | |||
RETURN_IF_FALSE(is_compute_capability_required(6, 1)); | |||
RETURN_IF_FALSE( | |||
args.src_layout->is_contiguous() && args.dst_layout->is_contiguous()); | |||
using Param = param::ConvBias; | |||
using Format = Param::Format; | |||
using Sparse = Param::Sparse; | |||
using Mode = Param::Mode; | |||
using NonlineMode = Param::NonlineMode; | |||
auto&& param = args.opr->param(); | |||
auto&& fm = args.filter_meta; | |||
RETURN_IF_FALSE( | |||
param.format == Format::NCHW && | |||
args.src_layout->dtype.enumv() == DTypeEnum::Float32 && | |||
args.filter_layout->dtype.enumv() == DTypeEnum::Float32 && | |||
args.dst_layout->dtype.enumv() == DTypeEnum::Float32); | |||
RETURN_IF_FALSE(param.nonlineMode != NonlineMode::SIGMOID); | |||
RETURN_IF_FALSE( | |||
args.bias_layout->ndim <= 0 || | |||
(args.bias_layout->dtype.enumv() == DTypeEnum::Float32 && | |||
check_bias_share_in_channel(*args.bias_layout, param.format))); | |||
RETURN_IF_FALSE( | |||
args.z_layout->ndim <= 0 || | |||
args.z_layout->dtype.enumv() == DTypeEnum::Float32); | |||
RETURN_IF_FALSE(param.sparse == Sparse::GROUP); | |||
RETURN_IF_FALSE(param.mode == Mode::CROSS_CORRELATION); | |||
// check if channelwise convolution | |||
RETURN_IF_FALSE(fm.icpg == 1 && fm.ocpg == 1); | |||
RETURN_IF_FALSE(param.dilate_h == 1 && param.dilate_w == 1); | |||
const auto* op = get_cutlass_conv_op( | |||
args, ConvOperator::kFprop, ConvType::kDepthwiseConvolution, false, false); | |||
RETURN_IF_FALSE(op != nullptr); | |||
return true; | |||
#undef RETURN_IF_FALSE | |||
} | |||
void ConvBiasForwardImpl::AlgoFloat32NCHWFMAImplicitBatchedGemm::exec( | |||
const ExecArgs& args) const { | |||
auto&& param = args.opr->param(); | |||
auto&& fm = args.filter_meta; | |||
size_t n = args.src_layout->operator[](0), hi = args.src_layout->operator[](2), | |||
wi = args.src_layout->operator[](3); | |||
size_t ho = args.dst_layout->operator[](2), wo = args.dst_layout->operator[](3); | |||
size_t co = fm.group; | |||
size_t ci = co; | |||
// check if channelwise convolution | |||
megdnn_assert(fm.icpg == 1 && fm.ocpg == 1); | |||
auto&& stream = cuda_stream(args.opr->handle()); | |||
float alpha = 1.f; | |||
float beta = args.bias_layout->ndim > 0 ? 1.f : 0.f; | |||
void* bias_ptr = args.bias_layout->ndim > 0 ? args.bias_tensor->raw_ptr() : nullptr; | |||
float gamma = args.z_layout->ndim > 0 ? 1.f : 0.f; | |||
void* z_ptr = args.z_layout->ndim > 0 ? args.z_tensor->raw_ptr() : nullptr; | |||
// dummy parameters, used for quantization cases | |||
float theta = 0.f; | |||
float delta = 0.f; | |||
float threshold = 0.f; | |||
const auto* op = get_cutlass_conv_op( | |||
args, ConvOperator::kFprop, ConvType::kDepthwiseConvolution, false, false); | |||
UNPACK_CONV_PARAMETER(fm, param); | |||
MARK_USED_VAR | |||
execute_cutlass_conv_op( | |||
op, args.src_tensor->raw_ptr(), args.filter_tensor->raw_ptr(), bias_ptr, | |||
z_ptr, args.dst_tensor->raw_ptr(), nullptr, n, hi, wi, ci, co, fh, fw, ho, | |||
wo, ph, pw, sh, sw, dh, dw, &alpha, &beta, &gamma, &delta, &theta, | |||
&threshold, nullptr, stream, nullptr, fm.group); | |||
after_kernel_launch(); | |||
} | |||
// vim: syntax=cpp.doxygen |
@@ -145,9 +145,22 @@ ConvBiasForward::Algorithm* ConvBiasForwardImpl::get_algorithm_heuristic( | |||
const bool prefer_dnn_chanwise = slow_cudnn_chanwise_impl || | |||
args.filter_meta.stride[0] != 1 || | |||
args.filter_meta.stride[1] != 1 || hw_size < 512; | |||
//! choose for large kernel cases | |||
size_t fh = args.filter_meta.spatial[0], fw = args.filter_meta.spatial[1]; | |||
size_t hi = src[2], wi = src[3]; | |||
const bool prefer_dnn_lk_implbmm = hi <= 2 * fh && wi <= 2 * fw; | |||
//! avoid bad case in cudnn, check dnn chanwise impl first | |||
if (is_chanwise) { | |||
if (prefer_dnn_chanwise) { | |||
if (prefer_dnn_lk_implbmm) { | |||
#if CUDA_VERSION >= 10020 | |||
if (sm_algo_pack.f16_implicit_bmm[0].is_available_attribute( | |||
args, positive_attr, negative_attr, workspace_limit_in_bytes)) | |||
return &sm_algo_pack.f16_implicit_bmm[0]; | |||
#endif | |||
if (sm_algo_pack.f32_implicit_bmm[0].is_available_attribute( | |||
args, positive_attr, negative_attr, workspace_limit_in_bytes)) | |||
return &sm_algo_pack.f32_implicit_bmm[0]; | |||
} else if (prefer_dnn_chanwise) { | |||
if (sm_algo_pack.chanwise.is_available_attribute( | |||
args, positive_attr, negative_attr, workspace_limit_in_bytes)) | |||
return &sm_algo_pack.chanwise; | |||
@@ -45,6 +45,7 @@ public: | |||
class AlgoCUDNNConvBiasActivation; | |||
class AlgoChanwise; | |||
class AlgoChanwiseSmall; | |||
class AlgoDepthwiseLargeFilter; | |||
class AlgoChanwise8x8x32; | |||
class AlgoCUDNNConv; | |||
class AlgoFallbackNCHWQS8; | |||
@@ -71,6 +72,9 @@ public: | |||
class AlgoInt4Int4NHWCIMMAImplicitGemm; | |||
class AlgoUInt4Int4NHWCIMMAImplicitGemm; | |||
class AlgoBFloat16; | |||
// The following algorithms are suitable for channel wise convolution | |||
class AlgoFloat32NCHWFMAImplicitBatchedGemm; | |||
class AlgoFloat16NCHWHMMAImplicitBatchedGemm; | |||
class AlgoPack; | |||
@@ -19,10 +19,12 @@ using namespace cuda; | |||
ConvolutionBackwardDataImpl::AlgoPack::AlgoPack() { | |||
non_cudnn_algos.push_back(&chanwise); | |||
non_cudnn_algos.push_back(&chanwise_small); | |||
non_cudnn_algos.push_back(&depthwise_large_filter); | |||
non_cudnn_algos.push_back(&matmul); | |||
all_algos.push_back(&chanwise); // prefer chanwise | |||
all_algos.push_back(&chanwise_small); // prefer small chanwise | |||
all_algos.push_back(&depthwise_large_filter); | |||
fill_cudnn_algos(); | |||
for (auto&& i : cudnn) { | |||
@@ -41,6 +43,7 @@ ConvolutionBackwardDataImpl::AlgoPack::AlgoPack() { | |||
all_algos.push_back(&algo); | |||
int8_algos.push_back(&algo); | |||
} | |||
fill_dwconv_algos(); | |||
int8_algos.push_back(&int8_nchw_dotprod); | |||
all_algos.push_back(&int8_nchw_dotprod); | |||
@@ -54,6 +57,39 @@ ConvolutionBackwardDataImpl::AlgoPack::AlgoPack() { | |||
} | |||
} | |||
void ConvolutionBackwardDataImpl::AlgoPack::fill_dwconv_algos() { | |||
{ | |||
using AlgoParam = AlgoFloat32NCHWFMAImplicitBatchedGemm::AlgoParam; | |||
/// preferred algo | |||
implbmm_nchw_fma.emplace_back(AlgoParam{64, 128, 8, 32, 64, 8, 2}); | |||
implbmm_nchw_fma.emplace_back(AlgoParam{128, 128, 8, 32, 64, 8, 2}); | |||
implbmm_nchw_fma.emplace_back(AlgoParam{128, 64, 8, 64, 32, 8, 2}); | |||
implbmm_nchw_fma.emplace_back(AlgoParam{128, 32, 8, 64, 32, 8, 2}); | |||
implbmm_nchw_fma.emplace_back(AlgoParam{32, 128, 8, 32, 64, 8, 2}); | |||
implbmm_nchw_fma.emplace_back(AlgoParam{64, 64, 8, 32, 64, 8, 2}); | |||
implbmm_nchw_fma.emplace_back(AlgoParam{32, 64, 8, 32, 64, 8, 2}); | |||
implbmm_nchw_fma.emplace_back(AlgoParam{32, 32, 8, 32, 32, 8, 2}); | |||
implbmm_nchw_fma.emplace_back(AlgoParam{64, 32, 8, 64, 32, 8, 2}); | |||
for (auto&& algo : implbmm_nchw_fma) { | |||
all_algos.push_back(&algo); | |||
} | |||
} | |||
#if CUDA_VERSION >= 10010 | |||
{ | |||
using AlgoParam = AlgoFloat16NCHWHMMAImplicitBatchedGemm::AlgoParam; | |||
/// preferred algo | |||
implbmm_nchw_hmma.emplace_back(AlgoParam{64, 128, 32, 32, 32, 32, 8, 8, 4, 2}); | |||
implbmm_nchw_hmma.emplace_back(AlgoParam{128, 128, 32, 32, 32, 32, 8, 8, 4, 2}); | |||
implbmm_nchw_hmma.emplace_back(AlgoParam{128, 256, 32, 64, 64, 32, 8, 8, 4, 2}); | |||
implbmm_nchw_hmma.emplace_back(AlgoParam{128, 64, 32, 32, 32, 32, 8, 8, 4, 2}); | |||
implbmm_nchw_hmma.emplace_back(AlgoParam{64, 64, 32, 32, 32, 32, 8, 8, 4, 2}); | |||
for (auto&& algo : implbmm_nchw_hmma) { | |||
all_algos.push_back(&algo); | |||
} | |||
} | |||
#endif | |||
} | |||
MEGDNN_DEF_GET_ALGO_FROM_DESC(ConvolutionBackwardDataImpl) | |||
ConvolutionBackwardDataImpl::AlgoCUDNN* ConvolutionBackwardDataImpl::AlgoPack:: | |||
@@ -37,11 +37,14 @@ public: | |||
CUDA_MATMUL, | |||
CUDA_CHANWISE, | |||
CUDA_CHANWISE_SMALL, | |||
CUDA_DEPTHWISE_LARGE_FILTER, | |||
CUDA_BFLOAT16, | |||
CUDA_GROUP_CONV_GENERAL, | |||
CUDA_IMPLICIT_GEMM_NCHW4_DOTPROD_INT8, | |||
CUDA_IMPLICIT_GEMM_NCHW_DOTPROD_INT8, | |||
CUDA_IMPLICIT_GEMM_NHWC_IMMA_INT8 | |||
CUDA_IMPLICIT_GEMM_NHWC_IMMA_INT8, | |||
CUDA_IMPLICIT_BATCHED_GEMM_FMA_NCHW_F32, | |||
CUDA_IMPLICIT_BATCHED_GEMM_HMMA_NCHW_F16, | |||
}; | |||
using Mapper = std::unordered_map<AlgorithmDesc, AlgoBase*>; | |||
@@ -190,6 +193,20 @@ public: | |||
} | |||
}; | |||
class ConvolutionBackwardDataImpl::AlgoDepthwiseLargeFilter final : public AlgoBase { | |||
public: | |||
bool is_available(const SizeArgs& args) const override; | |||
size_t get_workspace_in_bytes(const SizeArgs& args) const override; | |||
void exec(const ExecArgs& args) const override; | |||
const char* name() const override { return "DEPTHWISE_LARGE_FILTER"; } | |||
MEGDNN_DECL_ALGO_TYPE(CUDA_DEPTHWISE_LARGE_FILTER) | |||
AlgoAttribute attribute() const override { return AlgoAttribute::REPRODUCIBLE; } | |||
private: | |||
mutable std::string m_name; | |||
}; | |||
class ConvolutionBackwardDataImpl::AlgoBFloat16 final : public AlgoBase { | |||
public: | |||
bool is_available(const SizeArgs& args) const override; | |||
@@ -315,6 +332,82 @@ private: | |||
std::string m_name; | |||
}; | |||
class ConvolutionBackwardDataImpl::AlgoFloat32NCHWFMAImplicitBatchedGemm final | |||
: public AlgoBase { | |||
public: | |||
struct AlgoParam { | |||
int threadblock_m; | |||
int threadblock_n; | |||
int threadblock_k; | |||
int warp_m; | |||
int warp_n; | |||
int warp_k; | |||
int stage; | |||
std::string to_string() { | |||
return ssprintf( | |||
"_%dX%dX%d_%dX%dX%d_%dstage", threadblock_m, threadblock_n, | |||
threadblock_k, warp_m, warp_n, warp_k, stage); | |||
} | |||
}; | |||
AlgoFloat32NCHWFMAImplicitBatchedGemm(AlgoParam algo_param) | |||
: m_algo_param{algo_param}, | |||
m_name{ssprintf( | |||
"FLOAT32_NCHW_FMA_IMPLICIT_BATCHED_GEMM%s", | |||
m_algo_param.to_string().c_str())} {} | |||
bool is_available(const SizeArgs& args) const override; | |||
size_t get_workspace_in_bytes(const SizeArgs& args) const override { return 0; } | |||
void exec(const ExecArgs& args) const override; | |||
const char* name() const override { return m_name.c_str(); } | |||
AlgoAttribute attribute() const override { return AlgoAttribute::REPRODUCIBLE; } | |||
MEGDNN_DECL_ALGO_TYPE(CUDA_IMPLICIT_BATCHED_GEMM_FMA_NCHW_F32) | |||
private: | |||
const void* get_available_op(const SizeArgs& args) const; | |||
AlgoParam m_algo_param; | |||
std::string m_name; | |||
}; | |||
class ConvolutionBackwardDataImpl::AlgoFloat16NCHWHMMAImplicitBatchedGemm final | |||
: public AlgoBase { | |||
public: | |||
/// add instruction shape as member of algo param, because f16 tensor core has 2 | |||
/// different matrix shapes (i.e. mma.884 and mma.1688) | |||
struct AlgoParam { | |||
int threadblock_m; | |||
int threadblock_n; | |||
int threadblock_k; | |||
int warp_m; | |||
int warp_n; | |||
int warp_k; | |||
int instruction_m; | |||
int instruction_n; | |||
int instruction_k; | |||
int stage; | |||
std::string to_string() { | |||
return ssprintf( | |||
"_%dX%dX%d_%dX%dX%d_mma%dX%dX%d_%dstage", threadblock_m, | |||
threadblock_n, threadblock_k, warp_m, warp_n, warp_k, instruction_m, | |||
instruction_n, instruction_k, stage); | |||
} | |||
}; | |||
AlgoFloat16NCHWHMMAImplicitBatchedGemm(AlgoParam algo_param) | |||
: m_algo_param{algo_param}, | |||
m_name{ssprintf( | |||
"FLOAT16_NCHW_HMMA_IMPLICIT_BATCHED_GEMM%s", | |||
m_algo_param.to_string().c_str())} {} | |||
bool is_available(const SizeArgs& args) const override; | |||
size_t get_workspace_in_bytes(const SizeArgs& args) const override { return 0; } | |||
void exec(const ExecArgs& args) const override; | |||
const char* name() const override { return m_name.c_str(); } | |||
AlgoAttribute attribute() const override { return AlgoAttribute::REPRODUCIBLE; } | |||
MEGDNN_DECL_ALGO_TYPE(CUDA_IMPLICIT_BATCHED_GEMM_HMMA_NCHW_F16) | |||
private: | |||
const void* get_available_op(const SizeArgs& args) const; | |||
AlgoParam m_algo_param; | |||
std::string m_name; | |||
}; | |||
class ConvolutionBackwardDataImpl::AlgoPack : NonCopyableObj { | |||
// defined in cudnn.cpp | |||
void fill_cudnn_algos(); | |||
@@ -322,6 +415,7 @@ class ConvolutionBackwardDataImpl::AlgoPack : NonCopyableObj { | |||
void fill_int8_dp4a_algos(); | |||
// defined in implicit_gemm_int8_nhwc_imma.cpp | |||
void fill_int8_imma_algos(); | |||
void fill_dwconv_algos(); | |||
AlgoBase::Mapper m_all_algos_map; | |||
@@ -332,11 +426,14 @@ public: | |||
AlgoMatmul matmul; | |||
AlgoChanwise chanwise; | |||
AlgoChanwiseSmall chanwise_small; | |||
AlgoDepthwiseLargeFilter depthwise_large_filter; | |||
AlgoBFloat16 bfloat16; | |||
AlgoGroupConvGeneral group; | |||
std::vector<AlgoInt8NCHW4DotProdImplicitGemm> int8_nchw4_dotprod; | |||
AlgoInt8NCHWDotProdImplicitGemm int8_nchw_dotprod; | |||
std::vector<AlgoInt8NHWCIMMAImplicitGemm> int8_nhwc_imma; | |||
std::vector<AlgoFloat32NCHWFMAImplicitBatchedGemm> implbmm_nchw_fma; | |||
std::vector<AlgoFloat16NCHWHMMAImplicitBatchedGemm> implbmm_nchw_hmma; | |||
std::vector<AlgoBase*> | |||
//! all algorithms | |||
@@ -0,0 +1,89 @@ | |||
/** | |||
* \file dnn/src/cuda/convolution/backward_data/depthwise_large_filter.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#include "src/cuda/conv_bias/chanwise/depthwise_large_filter.cuh" | |||
#include "src/cuda/convolution/backward_data/algo.h" | |||
#include "src/cuda/convolution/chanwise/kern.cuh" | |||
#include "src/cuda/utils.h" | |||
using namespace megdnn; | |||
using namespace cuda; | |||
using namespace convolution; | |||
namespace { | |||
inline bool is_available_depthwise_large_filter(const chanwise::Param& param) { | |||
if ((param.stride_h == 1 && param.stride_w == 1) || | |||
(param.stride_h == 2 && param.stride_w == 2)) { | |||
auto&& device_prop = cuda::current_device_prop(); | |||
static int const unroll_oh = 1, unroll_fh = 1; | |||
CHECK(BWD) | |||
} | |||
return false; | |||
} | |||
} // anonymous namespace | |||
bool ConvolutionBackwardDataImpl::AlgoDepthwiseLargeFilter::is_available( | |||
const SizeArgs& args) const { | |||
if (!args.grad_layout->is_contiguous() || !args.diff_layout->is_contiguous()) { | |||
return false; | |||
} | |||
if (args.diff_layout->dtype != args.filter_layout->dtype && | |||
(args.diff_layout->dtype != dtype::Float32() | |||
#if CUDA_VERSION >= 9000 | |||
|| args.diff_layout->dtype != dtype::Float16() | |||
#endif | |||
)) { | |||
return false; | |||
} | |||
auto param = chanwise::Param::from_fwd_args( | |||
{args.handle, args.diff_layout, args.filter_layout, args.filter_meta, | |||
args.grad_layout}); | |||
auto&& fm = args.filter_meta; | |||
return fm.group > 1 && args.filter_meta.format == Param::Format::NCHW && | |||
args.diff_layout->dtype.category() == DTypeCategory::FLOAT && | |||
args.opr->param().compute_mode == Param::ComputeMode::DEFAULT && | |||
fm.spatial_ndim == 2 && fm.icpg == 1 && fm.ocpg == 1 && | |||
fm.dilation[0] == 1 && fm.dilation[1] == 1 && !fm.should_flip && | |||
is_available_depthwise_large_filter(param); | |||
} | |||
size_t ConvolutionBackwardDataImpl::AlgoDepthwiseLargeFilter::get_workspace_in_bytes( | |||
const SizeArgs& args) const { | |||
return 0; | |||
} | |||
void ConvolutionBackwardDataImpl::AlgoDepthwiseLargeFilter::exec( | |||
const ExecArgs& args) const { | |||
auto kparam = chanwise::Param::from_fwd_args( | |||
{args.handle, args.diff_layout, args.filter_layout, args.filter_meta, | |||
args.grad_layout}); | |||
auto stream = cuda_stream(args.handle); | |||
switch (args.diff_layout->dtype.enumv()) { | |||
case DTypeEnum::Float32: | |||
chanwise::run_bwd_depthwise_large_filter( | |||
args.grad_tensor->ptr<float>(), args.diff_tensor->ptr<float>(), | |||
args.filter_tensor->ptr<float>(), kparam, stream); | |||
break; | |||
#if CUDA_VERSION >= 9000 | |||
case DTypeEnum::Float16: | |||
chanwise::run_bwd_depthwise_large_filter( | |||
static_cast<half*>(args.grad_tensor->raw_ptr()), | |||
static_cast<half*>(args.diff_tensor->raw_ptr()), | |||
static_cast<half*>(args.filter_tensor->raw_ptr()), kparam, stream); | |||
break; | |||
#endif | |||
default: | |||
megdnn_assert_internal(0); | |||
} | |||
} | |||
// vim: syntax=cpp.doxygen |
@@ -0,0 +1,149 @@ | |||
/** | |||
* \file | |||
* dnn/src/cuda/convolution/backward_data/implicit_batched_gemm_float16_nchw_hmma.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "src/cuda/convolution/backward_data/algo.h" | |||
#include "src/cuda/cutlass/singleton.h" | |||
#include "src/cuda/utils.h" | |||
using namespace megdnn; | |||
using namespace cuda; | |||
using namespace cutlass::library; | |||
const void* ConvolutionBackwardDataImpl::AlgoFloat16NCHWHMMAImplicitBatchedGemm:: | |||
get_available_op(const SizeArgs& args) const { | |||
int alignment_diff = 0; | |||
int wo = args.diff_layout->dtype.size(args.diff_layout->operator[](3)); | |||
for (int candidate : {16, 4, 2}) { | |||
if (wo % candidate == 0) { | |||
alignment_diff = candidate; | |||
break; | |||
} | |||
} | |||
alignment_diff /= args.diff_layout->dtype.size(1); | |||
NumericTypeID accumulator_dtype = | |||
args.opr->param().compute_mode == param::Convolution::ComputeMode::DEFAULT | |||
? NumericTypeID::kF16 | |||
: NumericTypeID::kF32; | |||
ConvolutionKey key{ | |||
cutlass::conv::Operator::kDgrad, | |||
NumericTypeID::kF16, | |||
LayoutTypeID::kTensorNCHW, | |||
NumericTypeID::kF16, | |||
LayoutTypeID::kTensorNCHW, | |||
NumericTypeID::kF16, | |||
LayoutTypeID::kTensorNCHW, | |||
NumericTypeID::kF16, | |||
LayoutTypeID::kTensorNCHW, | |||
accumulator_dtype, | |||
cutlass::conv::ConvType::kDepthwiseConvolution, | |||
m_algo_param.threadblock_m, | |||
m_algo_param.threadblock_n, | |||
m_algo_param.threadblock_k, | |||
m_algo_param.warp_m, | |||
m_algo_param.warp_n, | |||
m_algo_param.warp_k, | |||
m_algo_param.instruction_m, | |||
m_algo_param.instruction_n, | |||
m_algo_param.instruction_k, | |||
cutlass::epilogue::EpilogueType::kBiasAddLinearCombination, | |||
m_algo_param.stage, | |||
cutlass::conv::SpecialOptimizeDesc::NONE, | |||
alignment_diff, | |||
1, | |||
false}; | |||
return (void*)Singleton::get().operation_table.find_op(key); | |||
} | |||
bool ConvolutionBackwardDataImpl::AlgoFloat16NCHWHMMAImplicitBatchedGemm::is_available( | |||
const SizeArgs& args) const { | |||
#define RETURN_IF_FALSE(stmt_) \ | |||
if (!(stmt_)) \ | |||
return false; | |||
RETURN_IF_FALSE(is_compute_capability_required(7, 0)); | |||
RETURN_IF_FALSE( | |||
args.diff_layout->is_contiguous() && args.grad_layout->is_contiguous()); | |||
using Param = param::Convolution; | |||
using Format = Param::Format; | |||
using Sparse = Param::Sparse; | |||
using Mode = Param::Mode; | |||
auto&& param = args.opr->param(); | |||
auto&& fm = args.filter_meta; | |||
RETURN_IF_FALSE( | |||
param.format == Format::NCHW && | |||
args.diff_layout->dtype.enumv() == DTypeEnum::Float16 && | |||
args.filter_layout->dtype.enumv() == DTypeEnum::Float16 && | |||
args.grad_layout->dtype.enumv() == DTypeEnum::Float16); | |||
RETURN_IF_FALSE(param.sparse == Sparse::GROUP); | |||
RETURN_IF_FALSE(param.mode == Mode::CROSS_CORRELATION); | |||
// check if channelwise convolution | |||
RETURN_IF_FALSE(fm.icpg == 1 && fm.ocpg == 1); | |||
RETURN_IF_FALSE(param.dilate_h == 1 && param.dilate_w == 1); | |||
const auto* op = get_available_op(args); | |||
RETURN_IF_FALSE(op != nullptr); | |||
return true; | |||
#undef RETURN_IF_FALSE | |||
} | |||
void ConvolutionBackwardDataImpl::AlgoFloat16NCHWHMMAImplicitBatchedGemm::exec( | |||
const ExecArgs& args) const { | |||
auto&& param = args.opr->param(); | |||
auto&& fm = args.filter_meta; | |||
int n = args.diff_layout->operator[](0), ho = args.diff_layout->operator[](2), | |||
wo = args.diff_layout->operator[](3); | |||
int hi = args.grad_layout->operator[](2), wi = args.grad_layout->operator[](3); | |||
int co = fm.group, ci = co, groups = co; | |||
int fh = fm.spatial[0], fw = fm.spatial[1]; | |||
int sh = fm.stride[0], sw = fm.stride[1]; | |||
int ph = fm.padding[0], pw = fm.padding[1]; | |||
int dh = param.dilate_h, dw = param.dilate_w; | |||
// check if channelwise convolution | |||
megdnn_assert(fm.icpg == 1 && fm.ocpg == 1); | |||
auto&& stream = cuda_stream(args.opr->handle()); | |||
float alpha = 1.f; | |||
float beta = 0.f; | |||
float gamma = 0.f; | |||
float delta = 0.f; | |||
const Operation* op = (const Operation*)get_available_op(args); | |||
cutlass::conv::Conv2dProblemSize problem_size{ | |||
n, hi, wi, ci, co, fh, fw, ho, | |||
wo, ph, pw, sh, sw, dh, dw, cutlass::conv::Mode::kCrossCorrelation, | |||
1, // split k slices, always 1 | |||
groups, // groups | |||
}; | |||
cutlass::library::ConvolutionArguments conv_args{ | |||
problem_size, | |||
args.diff_tensor->raw_ptr(), | |||
args.filter_tensor->raw_ptr(), | |||
nullptr, | |||
nullptr, | |||
args.grad_tensor->raw_ptr(), | |||
&alpha, | |||
&beta, | |||
&gamma, | |||
&delta, | |||
nullptr, | |||
nullptr, | |||
nullptr, | |||
nullptr}; | |||
cutlass_check(op->run(&conv_args, nullptr, stream)); | |||
after_kernel_launch(); | |||
} | |||
// vim: syntax=cpp.doxygen |
@@ -0,0 +1,145 @@ | |||
/** | |||
* \file | |||
* dnn/src/cuda/convolution/backward_data/implicit_batched_gemm_float32_nchw_fma.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "src/cuda/convolution/backward_data/algo.h" | |||
#include "src/cuda/cutlass/singleton.h" | |||
#include "src/cuda/utils.h" | |||
using namespace megdnn; | |||
using namespace cuda; | |||
using namespace cutlass::library; | |||
const void* ConvolutionBackwardDataImpl::AlgoFloat32NCHWFMAImplicitBatchedGemm:: | |||
get_available_op(const SizeArgs& args) const { | |||
int alignment_diff = 0; | |||
int wo = args.diff_layout->dtype.size(args.diff_layout->operator[](3)); | |||
for (int candidate : {16, 4}) { | |||
if (wo % candidate == 0) { | |||
alignment_diff = candidate; | |||
break; | |||
} | |||
} | |||
alignment_diff /= args.diff_layout->dtype.size(1); | |||
ConvolutionKey key{ | |||
cutlass::conv::Operator::kDgrad, | |||
NumericTypeID::kF32, | |||
LayoutTypeID::kTensorNCHW, | |||
NumericTypeID::kF32, | |||
LayoutTypeID::kTensorNCHW, | |||
NumericTypeID::kF32, | |||
LayoutTypeID::kTensorNCHW, | |||
NumericTypeID::kF32, | |||
LayoutTypeID::kTensorNCHW, | |||
NumericTypeID::kF32, | |||
cutlass::conv::ConvType::kDepthwiseConvolution, | |||
m_algo_param.threadblock_m, | |||
m_algo_param.threadblock_n, | |||
m_algo_param.threadblock_k, | |||
m_algo_param.warp_m, | |||
m_algo_param.warp_n, | |||
m_algo_param.warp_k, | |||
1, | |||
1, | |||
1, | |||
cutlass::epilogue::EpilogueType::kBiasAddLinearCombination, | |||
m_algo_param.stage, | |||
cutlass::conv::SpecialOptimizeDesc::NONE, | |||
alignment_diff, | |||
1, | |||
false}; | |||
return (void*)Singleton::get().operation_table.find_op(key); | |||
} | |||
bool ConvolutionBackwardDataImpl::AlgoFloat32NCHWFMAImplicitBatchedGemm::is_available( | |||
const SizeArgs& args) const { | |||
#define RETURN_IF_FALSE(stmt_) \ | |||
if (!(stmt_)) \ | |||
return false; | |||
RETURN_IF_FALSE(is_compute_capability_required(6, 1)); | |||
RETURN_IF_FALSE( | |||
args.diff_layout->is_contiguous() && args.grad_layout->is_contiguous()); | |||
using Param = param::Convolution; | |||
using Format = Param::Format; | |||
using Sparse = Param::Sparse; | |||
using Mode = Param::Mode; | |||
auto&& param = args.opr->param(); | |||
auto&& fm = args.filter_meta; | |||
RETURN_IF_FALSE( | |||
param.format == Format::NCHW && | |||
args.diff_layout->dtype.enumv() == DTypeEnum::Float32 && | |||
args.filter_layout->dtype.enumv() == DTypeEnum::Float32 && | |||
args.grad_layout->dtype.enumv() == DTypeEnum::Float32); | |||
RETURN_IF_FALSE(param.sparse == Sparse::GROUP); | |||
RETURN_IF_FALSE(param.mode == Mode::CROSS_CORRELATION); | |||
// check if channelwise convolution | |||
RETURN_IF_FALSE(fm.icpg == 1 && fm.ocpg == 1); | |||
RETURN_IF_FALSE(param.dilate_h == 1 && param.dilate_w == 1); | |||
const auto* op = get_available_op(args); | |||
RETURN_IF_FALSE(op != nullptr); | |||
return true; | |||
#undef RETURN_IF_FALSE | |||
} | |||
void ConvolutionBackwardDataImpl::AlgoFloat32NCHWFMAImplicitBatchedGemm::exec( | |||
const ExecArgs& args) const { | |||
auto&& param = args.opr->param(); | |||
auto&& fm = args.filter_meta; | |||
int n = args.diff_layout->operator[](0), ho = args.diff_layout->operator[](2), | |||
wo = args.diff_layout->operator[](3); | |||
int hi = args.grad_layout->operator[](2), wi = args.grad_layout->operator[](3); | |||
int co = fm.group, ci = co, groups = co; | |||
int fh = fm.spatial[0], fw = fm.spatial[1]; | |||
int sh = fm.stride[0], sw = fm.stride[1]; | |||
int ph = fm.padding[0], pw = fm.padding[1]; | |||
int dh = param.dilate_h, dw = param.dilate_w; | |||
// check if channelwise convolution | |||
megdnn_assert(fm.icpg == 1 && fm.ocpg == 1); | |||
auto&& stream = cuda_stream(args.opr->handle()); | |||
float alpha = 1.f; | |||
float beta = 0.f; | |||
float gamma = 0.f; | |||
float delta = 0.f; | |||
const Operation* op = (const Operation*)get_available_op(args); | |||
cutlass::conv::Conv2dProblemSize problem_size{ | |||
n, hi, wi, ci, co, fh, fw, ho, | |||
wo, ph, pw, sh, sw, dh, dw, cutlass::conv::Mode::kCrossCorrelation, | |||
1, // split k slices, always 1 | |||
groups, // groups | |||
}; | |||
cutlass::library::ConvolutionArguments conv_args{ | |||
problem_size, | |||
args.diff_tensor->raw_ptr(), | |||
args.filter_tensor->raw_ptr(), | |||
nullptr, | |||
nullptr, | |||
args.grad_tensor->raw_ptr(), | |||
&alpha, | |||
&beta, | |||
&gamma, | |||
&delta, | |||
nullptr, | |||
nullptr, | |||
nullptr, | |||
nullptr}; | |||
cutlass_check(op->run(&conv_args, nullptr, stream)); | |||
after_kernel_launch(); | |||
} | |||
// vim: syntax=cpp.doxygen |
@@ -29,6 +29,19 @@ const void* ConvolutionBackwardDataImpl::AlgoInt8NCHW4DotProdImplicitGemm:: | |||
(sh == 2 && sw == 2) | |||
? cutlass::conv::SpecialOptimizeDesc::DECONV_DOUBLE_UPSAMPLING | |||
: cutlass::conv::SpecialOptimizeDesc::NONE; | |||
int alignment_filter = 4; | |||
constexpr int warp_size = 32; | |||
int threads = warp_size * m_algo_param.threadblock_m * m_algo_param.threadblock_n * | |||
m_algo_param.threadblock_k / | |||
(m_algo_param.warp_m * m_algo_param.warp_n * m_algo_param.warp_k); | |||
int threadblock_loads = args.filter_layout->dtype.size( | |||
m_algo_param.threadblock_m * m_algo_param.threadblock_k); | |||
int load_per_thread = threadblock_loads / threads; | |||
if (load_per_thread >= 16) | |||
alignment_filter = 16; | |||
else if (load_per_thread >= 8) | |||
alignment_filter = 8; | |||
megdnn_assert(load_per_thread >= 4); | |||
ConvolutionKey key{ | |||
cutlass::conv::Operator::kDgrad, | |||
NumericTypeID::kS8, | |||
@@ -39,6 +52,7 @@ const void* ConvolutionBackwardDataImpl::AlgoInt8NCHW4DotProdImplicitGemm:: | |||
LayoutTypeID::kTensorNC4HW4, | |||
NumericTypeID::kS32, | |||
LayoutTypeID::kTensorNC4HW4, | |||
NumericTypeID::kS32, | |||
cutlass::conv::ConvType::kConvolution, | |||
m_algo_param.threadblock_m, | |||
m_algo_param.threadblock_n, | |||
@@ -52,6 +66,8 @@ const void* ConvolutionBackwardDataImpl::AlgoInt8NCHW4DotProdImplicitGemm:: | |||
cutlass::epilogue::EpilogueType::kBiasAddLinearCombinationClamp, | |||
m_algo_param.stage, | |||
special_optimization, | |||
4, | |||
alignment_filter, | |||
false}; | |||
return (void*)Singleton::get().operation_table.find_op(key); | |||
} | |||
@@ -39,6 +39,7 @@ const void* ConvolutionBackwardDataImpl::AlgoInt8NCHWDotProdImplicitGemm:: | |||
LayoutTypeID::kTensorNC4HW4, | |||
NumericTypeID::kS32, | |||
LayoutTypeID::kTensorNC4HW4, | |||
NumericTypeID::kS32, | |||
cutlass::conv::ConvType::kConvolution, | |||
16, | |||
64, | |||
@@ -52,6 +53,8 @@ const void* ConvolutionBackwardDataImpl::AlgoInt8NCHWDotProdImplicitGemm:: | |||
cutlass::epilogue::EpilogueType::kBiasAddLinearCombinationClamp, | |||
2, | |||
special_optimization, | |||
4, | |||
4, | |||
false}; | |||
return (void*)Singleton::get().operation_table.find_op(key); | |||
} | |||
@@ -50,6 +50,7 @@ const void* ConvolutionBackwardDataImpl::AlgoInt8NHWCIMMAImplicitGemm::get_avail | |||
LayoutTypeID::kTensorNHWC, | |||
NumericTypeID::kS32, | |||
LayoutTypeID::kTensorNHWC, | |||
NumericTypeID::kS32, | |||
cutlass::conv::ConvType::kConvolution, | |||
m_algo_param.threadblock_m, | |||
m_algo_param.threadblock_n, | |||
@@ -63,6 +64,8 @@ const void* ConvolutionBackwardDataImpl::AlgoInt8NHWCIMMAImplicitGemm::get_avail | |||
cutlass::epilogue::EpilogueType::kBiasAddLinearCombinationClamp, | |||
m_algo_param.stage, | |||
special_optimization, | |||
m_algo_param.access_size, | |||
m_algo_param.access_size, | |||
false}; | |||
return (void*)Singleton::get().operation_table.find_op(key); | |||
} | |||
@@ -25,6 +25,7 @@ ConvolutionBackwardFilterImpl::AlgoPack::AlgoPack() { | |||
for (auto&& i : cudnn) { | |||
all_algos.push_back(&i); | |||
} | |||
fill_dwconv_algos(); | |||
all_algos.push_back(&matmul); | |||
all_algos.push_back(&group); | |||
@@ -48,6 +49,39 @@ ConvolutionBackwardFilterImpl::AlgoCUDNN* ConvolutionBackwardFilterImpl::AlgoPac | |||
"can not find cudnn bwd_filter algorithm %d", static_cast<int>(algo))); | |||
} | |||
void ConvolutionBackwardFilterImpl::AlgoPack::fill_dwconv_algos() { | |||
{ | |||
using AlgoParam = AlgoFloat32NCHWFMAImplicitBatchedGemm::AlgoParam; | |||
/// preferred algo | |||
implbmm_nchw_fma.emplace_back(AlgoParam{64, 128, 8, 32, 64, 8, 2}); | |||
implbmm_nchw_fma.emplace_back(AlgoParam{128, 128, 8, 32, 64, 8, 2}); | |||
implbmm_nchw_fma.emplace_back(AlgoParam{128, 64, 8, 64, 32, 8, 2}); | |||
implbmm_nchw_fma.emplace_back(AlgoParam{128, 32, 8, 64, 32, 8, 2}); | |||
implbmm_nchw_fma.emplace_back(AlgoParam{32, 128, 8, 32, 64, 8, 2}); | |||
implbmm_nchw_fma.emplace_back(AlgoParam{64, 64, 8, 32, 64, 8, 2}); | |||
implbmm_nchw_fma.emplace_back(AlgoParam{32, 64, 8, 32, 64, 8, 2}); | |||
implbmm_nchw_fma.emplace_back(AlgoParam{32, 32, 8, 32, 32, 8, 2}); | |||
implbmm_nchw_fma.emplace_back(AlgoParam{64, 32, 8, 64, 32, 8, 2}); | |||
for (auto&& algo : implbmm_nchw_fma) { | |||
all_algos.push_back(&algo); | |||
} | |||
} | |||
#if CUDA_VERSION >= 10010 | |||
{ | |||
using AlgoParam = AlgoFloat16NCHWHMMAImplicitBatchedGemm::AlgoParam; | |||
/// preferred algo | |||
implbmm_nchw_hmma.emplace_back(AlgoParam{64, 128, 32, 32, 32, 32, 8, 8, 4, 2}); | |||
implbmm_nchw_hmma.emplace_back(AlgoParam{128, 128, 32, 32, 32, 32, 8, 8, 4, 2}); | |||
implbmm_nchw_hmma.emplace_back(AlgoParam{128, 256, 32, 64, 64, 32, 8, 8, 4, 2}); | |||
implbmm_nchw_hmma.emplace_back(AlgoParam{128, 64, 32, 32, 32, 32, 8, 8, 4, 2}); | |||
implbmm_nchw_hmma.emplace_back(AlgoParam{64, 64, 32, 32, 32, 32, 8, 8, 4, 2}); | |||
for (auto&& algo : implbmm_nchw_hmma) { | |||
all_algos.push_back(&algo); | |||
} | |||
} | |||
#endif | |||
} | |||
ConvolutionBackwardFilterImpl::AlgoPack ConvolutionBackwardFilterImpl::sm_algo_pack; | |||
ConvolutionBackwardFilterImpl::AlgoBase::SizeArgs::SizeArgs( | |||
@@ -37,6 +37,8 @@ public: | |||
CUDA_CHANWISE, | |||
CUDA_BFLOAT16, | |||
CUDA_GROUP_CONV_GENERAL, | |||
CUDA_IMPLICIT_BATCHED_GEMM_FMA_NCHW_F32, | |||
CUDA_IMPLICIT_BATCHED_GEMM_HMMA_NCHW_F16, | |||
}; | |||
using Mapper = std::unordered_map<AlgorithmDesc, AlgoBase*>; | |||
@@ -210,9 +212,86 @@ private: | |||
WorkspaceBundle get_workspace_bundle(void* ptr, const SizeArgs& args) const; | |||
}; | |||
class ConvolutionBackwardFilterImpl::AlgoFloat32NCHWFMAImplicitBatchedGemm final | |||
: public AlgoBase { | |||
public: | |||
struct AlgoParam { | |||
int threadblock_m; | |||
int threadblock_n; | |||
int threadblock_k; | |||
int warp_m; | |||
int warp_n; | |||
int warp_k; | |||
int stage; | |||
std::string to_string() { | |||
return ssprintf( | |||
"_%dX%dX%d_%dX%dX%d_%dstage", threadblock_m, threadblock_n, | |||
threadblock_k, warp_m, warp_n, warp_k, stage); | |||
} | |||
}; | |||
AlgoFloat32NCHWFMAImplicitBatchedGemm(AlgoParam algo_param) | |||
: m_algo_param{algo_param}, | |||
m_name{ssprintf( | |||
"FLOAT32_NCHW_FMA_IMPLICIT_BATCHED_GEMM%s", | |||
m_algo_param.to_string().c_str())} {} | |||
bool is_available(const SizeArgs& args) const override; | |||
size_t get_workspace_in_bytes(const SizeArgs& args) const override { return 0; } | |||
void exec(const ExecArgs& args) const override; | |||
const char* name() const override { return m_name.c_str(); } | |||
AlgoAttribute attribute() const override { return AlgoAttribute::REPRODUCIBLE; } | |||
MEGDNN_DECL_ALGO_TYPE(CUDA_IMPLICIT_BATCHED_GEMM_FMA_NCHW_F32) | |||
private: | |||
const void* get_available_op(const SizeArgs& args) const; | |||
AlgoParam m_algo_param; | |||
std::string m_name; | |||
}; | |||
class ConvolutionBackwardFilterImpl::AlgoFloat16NCHWHMMAImplicitBatchedGemm final | |||
: public AlgoBase { | |||
public: | |||
/// add instruction shape as member of algo param, because f16 tensor core has 2 | |||
/// different matrix shapes (i.e. mma.884 and mma.1688) | |||
struct AlgoParam { | |||
int threadblock_m; | |||
int threadblock_n; | |||
int threadblock_k; | |||
int warp_m; | |||
int warp_n; | |||
int warp_k; | |||
int instruction_m; | |||
int instruction_n; | |||
int instruction_k; | |||
int stage; | |||
std::string to_string() { | |||
return ssprintf( | |||
"_%dX%dX%d_%dX%dX%d_mma%dX%dX%d_%dstage", threadblock_m, | |||
threadblock_n, threadblock_k, warp_m, warp_n, warp_k, instruction_m, | |||
instruction_n, instruction_k, stage); | |||
} | |||
}; | |||
AlgoFloat16NCHWHMMAImplicitBatchedGemm(AlgoParam algo_param) | |||
: m_algo_param{algo_param}, | |||
m_name{ssprintf( | |||
"FLOAT16_NCHW_HMMA_IMPLICIT_BATCHED_GEMM%s", | |||
m_algo_param.to_string().c_str())} {} | |||
bool is_available(const SizeArgs& args) const override; | |||
size_t get_workspace_in_bytes(const SizeArgs& args) const override; | |||
void exec(const ExecArgs& args) const override; | |||
const char* name() const override { return m_name.c_str(); } | |||
AlgoAttribute attribute() const override { return AlgoAttribute::REPRODUCIBLE; } | |||
MEGDNN_DECL_ALGO_TYPE(CUDA_IMPLICIT_BATCHED_GEMM_HMMA_NCHW_F16) | |||
private: | |||
const void* get_available_op(const SizeArgs& args) const; | |||
AlgoParam m_algo_param; | |||
std::string m_name; | |||
}; | |||
class ConvolutionBackwardFilterImpl::AlgoPack : NonCopyableObj { | |||
// defined in cudnn.cpp | |||
void fill_cudnn_algos(); | |||
void fill_dwconv_algos(); | |||
AlgoBase::Mapper m_all_algos_map; | |||
@@ -224,6 +303,8 @@ public: | |||
AlgoChanwise chanwise; | |||
AlgoGroupConvGeneral group; | |||
AlgoBFloat16 bfloat16; | |||
std::vector<AlgoFloat32NCHWFMAImplicitBatchedGemm> implbmm_nchw_fma; | |||
std::vector<AlgoFloat16NCHWHMMAImplicitBatchedGemm> implbmm_nchw_hmma; | |||
std::vector<AlgoBase*> | |||
//! all algorithms | |||
@@ -0,0 +1,172 @@ | |||
/** | |||
* \file | |||
* dnn/src/cuda/convolution/backward_filter/implicit_batched_gemm_float16_nchw_hmma.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "src/cuda/convolution/backward_filter/algo.h" | |||
#include "src/cuda/cutlass/singleton.h" | |||
#include "src/cuda/utils.h" | |||
using namespace megdnn; | |||
using namespace cuda; | |||
using namespace cutlass::library; | |||
const void* ConvolutionBackwardFilterImpl::AlgoFloat16NCHWHMMAImplicitBatchedGemm:: | |||
get_available_op(const SizeArgs& args) const { | |||
auto get_alignment = [](const TensorLayout& layout) { | |||
int alignment = 0; | |||
int width = layout.dtype.size(layout[3]); | |||
for (int candidate : {16, 4, 2}) { | |||
if (width % candidate == 0) { | |||
alignment = candidate; | |||
break; | |||
} | |||
} | |||
alignment /= layout.dtype.size(1); | |||
return alignment; | |||
}; | |||
int alignment_src = get_alignment(*args.src_layout); | |||
int alignment_diff = get_alignment(*args.diff_layout); | |||
megdnn_assert(alignment_src >= 1 && alignment_diff >= 1); | |||
NumericTypeID accumulator_dtype = | |||
args.opr->param().compute_mode == param::Convolution::ComputeMode::DEFAULT | |||
? NumericTypeID::kF16 | |||
: NumericTypeID::kF32; | |||
ConvolutionKey key{ | |||
cutlass::conv::Operator::kWgrad, | |||
NumericTypeID::kF16, // src tensor data type | |||
LayoutTypeID::kTensorNCHW, // src tensor layout | |||
NumericTypeID::kF16, // diff tensor data type | |||
LayoutTypeID::kTensorNCHW, // diff tensor layout | |||
NumericTypeID::kF32, // grad tensor data type | |||
LayoutTypeID::kTensorNCHW, // grad tensor layout | |||
NumericTypeID::kF32, // dummy argument, not used. | |||
LayoutTypeID::kTensorNCHW, // dummy argument, not used | |||
accumulator_dtype, | |||
cutlass::conv::ConvType::kDepthwiseConvolution, | |||
m_algo_param.threadblock_m, | |||
m_algo_param.threadblock_n, | |||
m_algo_param.threadblock_k, | |||
m_algo_param.warp_m, | |||
m_algo_param.warp_n, | |||
m_algo_param.warp_k, | |||
m_algo_param.instruction_m, | |||
m_algo_param.instruction_n, | |||
m_algo_param.instruction_k, | |||
cutlass::epilogue::EpilogueType::kLinearCombination, // no bias | |||
m_algo_param.stage, | |||
cutlass::conv::SpecialOptimizeDesc::NONE, | |||
alignment_src, | |||
alignment_diff, | |||
true}; | |||
return (void*)Singleton::get().operation_table.find_op(key); | |||
} | |||
bool ConvolutionBackwardFilterImpl::AlgoFloat16NCHWHMMAImplicitBatchedGemm:: | |||
is_available(const SizeArgs& args) const { | |||
#define RETURN_IF_FALSE(stmt_) \ | |||
if (!(stmt_)) \ | |||
return false; | |||
RETURN_IF_FALSE(is_compute_capability_required(7, 0)); | |||
RETURN_IF_FALSE( | |||
args.src_layout->is_contiguous() && args.diff_layout->is_contiguous() && | |||
args.grad_layout->is_contiguous()); | |||
using Param = param::Convolution; | |||
using Format = Param::Format; | |||
using Sparse = Param::Sparse; | |||
using Mode = Param::Mode; | |||
using ComputeMode = Param::ComputeMode; | |||
auto&& param = args.opr->param(); | |||
auto&& fm = args.grad_filter_meta; | |||
RETURN_IF_FALSE(param.compute_mode == ComputeMode::FLOAT32); | |||
RETURN_IF_FALSE( | |||
param.format == Format::NCHW && | |||
args.src_layout->dtype.enumv() == DTypeEnum::Float16 && | |||
args.diff_layout->dtype.enumv() == DTypeEnum::Float16 && | |||
args.grad_layout->dtype.enumv() == DTypeEnum::Float16); | |||
RETURN_IF_FALSE(param.sparse == Sparse::GROUP); | |||
RETURN_IF_FALSE(param.mode == Mode::CROSS_CORRELATION); | |||
// check if channelwise convolution | |||
RETURN_IF_FALSE(fm.icpg == 1 && fm.ocpg == 1); | |||
RETURN_IF_FALSE(param.dilate_h == 1 && param.dilate_w == 1); | |||
const auto* op = get_available_op(args); | |||
RETURN_IF_FALSE(op != nullptr); | |||
return true; | |||
#undef RETURN_IF_FALSE | |||
} | |||
size_t ConvolutionBackwardFilterImpl::AlgoFloat16NCHWHMMAImplicitBatchedGemm:: | |||
get_workspace_in_bytes(const SizeArgs& args) const { | |||
auto layout = *args.grad_layout; | |||
// modify data type | |||
layout.modify_dtype_inplace(dtype::Float32()); | |||
return layout.span().dist_byte(); | |||
} | |||
void ConvolutionBackwardFilterImpl::AlgoFloat16NCHWHMMAImplicitBatchedGemm::exec( | |||
const ExecArgs& args) const { | |||
auto&& param = args.opr->param(); | |||
auto&& fm = args.grad_filter_meta; | |||
int hi = args.src_layout->operator[](2), wi = args.src_layout->operator[](3); | |||
int n = args.diff_layout->operator[](0), ho = args.diff_layout->operator[](2), | |||
wo = args.diff_layout->operator[](3); | |||
int co = fm.group, ci = co, groups = co; | |||
int fh = fm.spatial[0], fw = fm.spatial[1]; | |||
int sh = fm.stride[0], sw = fm.stride[1]; | |||
int ph = fm.padding[0], pw = fm.padding[1]; | |||
int dh = param.dilate_h, dw = param.dilate_w; | |||
// check if channelwise convolution | |||
megdnn_assert(fm.icpg == 1 && fm.ocpg == 1); | |||
auto&& stream = cuda_stream(args.opr->handle()); | |||
float alpha = 1.f; | |||
float beta = 0.f; | |||
const Operation* op = (const Operation*)get_available_op(args); | |||
cutlass::conv::Conv2dProblemSize problem_size{ | |||
n, hi, wi, ci, co, fh, fw, ho, | |||
wo, ph, pw, sh, sw, dh, dw, cutlass::conv::Mode::kCrossCorrelation, | |||
1, // split k slices, always 1 | |||
groups, // groups | |||
}; | |||
cutlass::library::ConvolutionArguments conv_args{ | |||
problem_size, | |||
args.src_tensor->raw_ptr(), | |||
args.diff_tensor->raw_ptr(), | |||
nullptr, | |||
nullptr, | |||
args.workspace.raw_ptr, | |||
&alpha, | |||
&beta, | |||
nullptr, | |||
nullptr, | |||
nullptr, | |||
nullptr, | |||
nullptr, | |||
nullptr}; | |||
cutlass_check(op->run(&conv_args, nullptr, stream)); | |||
after_kernel_launch(); | |||
auto&& typecvt = args.opr->handle()->create_operator<TypeCvt>(); | |||
auto f32_grad_layout = *args.grad_layout; | |||
// modify data type | |||
f32_grad_layout.modify_dtype_inplace(dtype::Float32()); | |||
TensorND src{args.workspace.raw_ptr, f32_grad_layout}, | |||
dst{args.grad_tensor->raw_ptr(), *args.grad_layout}; | |||
typecvt->exec(src, dst); | |||
} | |||
// vim: syntax=cpp.doxygen |
@@ -0,0 +1,135 @@ | |||
/** | |||
* \file | |||
* dnn/src/cuda/convolution/backward_filter/implicit_batched_gemm_float32_nchw_fma.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "src/cuda/convolution/backward_filter/algo.h" | |||
#include "src/cuda/cutlass/singleton.h" | |||
#include "src/cuda/utils.h" | |||
using namespace megdnn; | |||
using namespace cuda; | |||
using namespace cutlass::library; | |||
const void* ConvolutionBackwardFilterImpl::AlgoFloat32NCHWFMAImplicitBatchedGemm:: | |||
get_available_op(const SizeArgs& args) const { | |||
ConvolutionKey key{ | |||
cutlass::conv::Operator::kWgrad, | |||
NumericTypeID::kF32, // src tensor data type | |||
LayoutTypeID::kTensorNCHW, // src tensor layout | |||
NumericTypeID::kF32, // diff tensor data type | |||
LayoutTypeID::kTensorNCHW, // diff tensor layout | |||
NumericTypeID::kF32, // grad tensor data type | |||
LayoutTypeID::kTensorNCHW, // grad tensor layout | |||
NumericTypeID::kF32, // dummy argument, not used. | |||
LayoutTypeID::kTensorNCHW, // dummy argument, not used | |||
NumericTypeID::kF32, | |||
cutlass::conv::ConvType::kDepthwiseConvolution, | |||
m_algo_param.threadblock_m, | |||
m_algo_param.threadblock_n, | |||
m_algo_param.threadblock_k, | |||
m_algo_param.warp_m, | |||
m_algo_param.warp_n, | |||
m_algo_param.warp_k, | |||
1, | |||
1, | |||
1, | |||
cutlass::epilogue::EpilogueType::kLinearCombination, // no bias | |||
m_algo_param.stage, | |||
cutlass::conv::SpecialOptimizeDesc::NONE, | |||
1, | |||
1, | |||
true}; | |||
return (void*)Singleton::get().operation_table.find_op(key); | |||
} | |||
bool ConvolutionBackwardFilterImpl::AlgoFloat32NCHWFMAImplicitBatchedGemm::is_available( | |||
const SizeArgs& args) const { | |||
#define RETURN_IF_FALSE(stmt_) \ | |||
if (!(stmt_)) \ | |||
return false; | |||
RETURN_IF_FALSE(is_compute_capability_required(6, 1)); | |||
RETURN_IF_FALSE( | |||
args.src_layout->is_contiguous() && args.diff_layout->is_contiguous() && | |||
args.grad_layout->is_contiguous()); | |||
using Param = param::Convolution; | |||
using Format = Param::Format; | |||
using Sparse = Param::Sparse; | |||
using Mode = Param::Mode; | |||
auto&& param = args.opr->param(); | |||
auto&& fm = args.grad_filter_meta; | |||
RETURN_IF_FALSE( | |||
param.format == Format::NCHW && | |||
args.src_layout->dtype.enumv() == DTypeEnum::Float32 && | |||
args.diff_layout->dtype.enumv() == DTypeEnum::Float32 && | |||
args.grad_layout->dtype.enumv() == DTypeEnum::Float32); | |||
RETURN_IF_FALSE(param.sparse == Sparse::GROUP); | |||
RETURN_IF_FALSE(param.mode == Mode::CROSS_CORRELATION); | |||
// check if channelwise convolution | |||
RETURN_IF_FALSE(fm.icpg == 1 && fm.ocpg == 1); | |||
RETURN_IF_FALSE(param.dilate_h == 1 && param.dilate_w == 1); | |||
const auto* op = get_available_op(args); | |||
RETURN_IF_FALSE(op != nullptr); | |||
return true; | |||
#undef RETURN_IF_FALSE | |||
} | |||
void ConvolutionBackwardFilterImpl::AlgoFloat32NCHWFMAImplicitBatchedGemm::exec( | |||
const ExecArgs& args) const { | |||
auto&& param = args.opr->param(); | |||
auto&& fm = args.grad_filter_meta; | |||
int hi = args.src_layout->operator[](2), wi = args.src_layout->operator[](3); | |||
int n = args.diff_layout->operator[](0), ho = args.diff_layout->operator[](2), | |||
wo = args.diff_layout->operator[](3); | |||
int co = fm.group, ci = co, groups = co; | |||
int fh = fm.spatial[0], fw = fm.spatial[1]; | |||
int sh = fm.stride[0], sw = fm.stride[1]; | |||
int ph = fm.padding[0], pw = fm.padding[1]; | |||
int dh = param.dilate_h, dw = param.dilate_w; | |||
// check if channelwise convolution | |||
megdnn_assert(fm.icpg == 1 && fm.ocpg == 1); | |||
auto&& stream = cuda_stream(args.opr->handle()); | |||
float alpha = 1.f; | |||
float beta = 0.f; | |||
const Operation* op = (const Operation*)get_available_op(args); | |||
cutlass::conv::Conv2dProblemSize problem_size{ | |||
n, hi, wi, ci, co, fh, fw, ho, | |||
wo, ph, pw, sh, sw, dh, dw, cutlass::conv::Mode::kCrossCorrelation, | |||
1, // split k slices, always 1 | |||
groups, // groups | |||
}; | |||
cutlass::library::ConvolutionArguments conv_args{ | |||
problem_size, | |||
args.src_tensor->raw_ptr(), | |||
args.diff_tensor->raw_ptr(), | |||
nullptr, | |||
nullptr, | |||
args.grad_tensor->raw_ptr(), | |||
&alpha, | |||
&beta, | |||
nullptr, | |||
nullptr, | |||
nullptr, | |||
nullptr, | |||
nullptr, | |||
nullptr}; | |||
cutlass_check(op->run(&conv_args, nullptr, stream)); | |||
after_kernel_launch(); | |||
} | |||
// vim: syntax=cpp.doxygen |
@@ -0,0 +1,54 @@ | |||
/** | |||
* \file dnn/src/cuda/conv_bias/chanwise/bwd_large_filter.cu | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#include "./kern.cuh" | |||
#include "./kern_helper.cuh" | |||
#include "cuda.h" | |||
#include "cuda_fp16.h" | |||
#include "src/cuda/convolution/chanwise/launch_config.cuh" | |||
#include "src/cuda/fp16_help.cuh" | |||
using namespace megdnn; | |||
using namespace cuda; | |||
using namespace convolution; | |||
using namespace chanwise; | |||
#include "src/cuda/conv_bias/chanwise/depthwise_large_filter_algo.cuh" | |||
namespace megdnn { | |||
namespace cuda { | |||
namespace convolution { | |||
namespace chanwise { | |||
// =====================================fwd===================================== | |||
template <> | |||
void run_bwd_depthwise_large_filter( | |||
float* dst, const float* src, const float* flt, const Param& param, | |||
cudaStream_t stream) { | |||
INSTANCE(float, float2, DepthwiseConv2dDirection::DIRECTION_BACKWARD) | |||
} | |||
#if CUDA_VERSION >= 9000 | |||
template <> | |||
void run_bwd_depthwise_large_filter( | |||
__half* dst, const __half* src, const __half* flt, const Param& param, | |||
cudaStream_t stream) { | |||
INSTANCE(__half, __half2, DepthwiseConv2dDirection::DIRECTION_BACKWARD) | |||
} | |||
#endif | |||
} // namespace chanwise | |||
} // namespace convolution | |||
} // namespace cuda | |||
} // namespace megdnn | |||
// vim: syntax=cuda.doxygen |
@@ -27,8 +27,10 @@ namespace chanwise { | |||
struct Param { | |||
uint32_t batch, src_chl, src_h, src_w, chl_mul, flt_h, flt_w, out_h, out_w, pad_h, | |||
pad_w, stride_h, stride_w, dilation_h, dilation_w; | |||
bool is_compute_deafult; | |||
#if MEGDNN_CC_HOST | |||
static Param from_fwd_args(const ForwardSizeArgs& args) { | |||
static Param from_fwd_args( | |||
const ForwardSizeArgs& args, bool is_compute_deafult_ = true) { | |||
#define U(v) static_cast<uint32_t>(v) | |||
auto&& src = args.src_layout->shape; | |||
auto&& dst = args.dst_layout->shape; | |||
@@ -42,11 +44,12 @@ struct Param { | |||
hw_pos = 1; | |||
} | |||
return { | |||
U(src[0]), U(src[c_pos]), U(src[hw_pos]), | |||
U(src[hw_pos + 1]), U(fm.ocpg), U(fm.spatial[0]), | |||
U(fm.spatial[1]), U(dst[hw_pos]), U(dst[hw_pos + 1]), | |||
U(fm.padding[0]), U(fm.padding[1]), U(fm.stride[0]), | |||
U(fm.stride[1]), U(fm.dilation[0]), U(fm.dilation[1]), | |||
U(src[0]), U(src[c_pos]), U(src[hw_pos]), | |||
U(src[hw_pos + 1]), U(fm.ocpg), U(fm.spatial[0]), | |||
U(fm.spatial[1]), U(dst[hw_pos]), U(dst[hw_pos + 1]), | |||
U(fm.padding[0]), U(fm.padding[1]), U(fm.stride[0]), | |||
U(fm.stride[1]), U(fm.dilation[0]), U(fm.dilation[1]), | |||
is_compute_deafult_, | |||
}; | |||
#undef U | |||
} | |||
@@ -64,6 +67,10 @@ void run_bwd_data( | |||
cudaStream_t stream); | |||
template <typename T> | |||
void run_bwd_depthwise_large_filter( | |||
T* dst, const T* src, const T* flt, const Param& param, cudaStream_t stream); | |||
template <typename T> | |||
void run_bwd_filter( | |||
T* filter_grad, const T* src, const T* dst_grad, const Param& param, | |||
cudaStream_t stream); | |||
@@ -115,6 +115,22 @@ ConvolutionBackwardDataImpl::Algorithm* ConvolutionBackwardDataImpl:: | |||
const AlgoAttribute& negative_attr) { | |||
AlgoBase::SizeArgs args(this, filter, diff, grad); | |||
//! choose for large kernel cases | |||
size_t fh = args.filter_meta.spatial[0], fw = args.filter_meta.spatial[1]; | |||
size_t ho = diff[2], wo = diff[3]; | |||
const bool prefer_dnn_lk_implbmm = args.filter_meta.format == Param::Format::NCHW && | |||
ho <= 2 * fh && wo <= 2 * fw; | |||
if (prefer_dnn_lk_implbmm) { | |||
#if CUDA_VERSION >= 10020 | |||
if (sm_algo_pack.implbmm_nchw_hmma[0].is_available_attribute( | |||
args, positive_attr, negative_attr, workspace_limit_in_bytes)) | |||
return &sm_algo_pack.implbmm_nchw_hmma[0]; | |||
#endif | |||
if (sm_algo_pack.implbmm_nchw_fma[0].is_available_attribute( | |||
args, positive_attr, negative_attr, workspace_limit_in_bytes)) | |||
return &sm_algo_pack.implbmm_nchw_fma[0]; | |||
} | |||
if (args.filter_meta.group > 1 && | |||
sm_algo_pack.chanwise.is_available_attribute( | |||
args, positive_attr, negative_attr, workspace_limit_in_bytes)) { | |||
@@ -242,6 +258,23 @@ ConvolutionBackwardFilterImpl::Algorithm* ConvolutionBackwardFilterImpl:: | |||
const AlgoAttribute& negative_attr) { | |||
AlgoBase::SizeArgs args(this, src, diff, grad); | |||
//! choose for large kernel cases | |||
size_t fh = args.grad_filter_meta.spatial[0], fw = args.grad_filter_meta.spatial[1]; | |||
size_t ho = diff[2], wo = diff[3]; | |||
const bool prefer_dnn_lk_implbmm = | |||
args.grad_filter_meta.format == Param::Format::NCHW && ho <= 2 * fh && | |||
wo <= 2 * fw; | |||
if (prefer_dnn_lk_implbmm) { | |||
#if CUDA_VERSION >= 10020 | |||
if (sm_algo_pack.implbmm_nchw_hmma[0].is_available_attribute( | |||
args, positive_attr, negative_attr, workspace_limit_in_bytes)) | |||
return &sm_algo_pack.implbmm_nchw_hmma[0]; | |||
#endif | |||
if (sm_algo_pack.implbmm_nchw_fma[0].is_available_attribute( | |||
args, positive_attr, negative_attr, workspace_limit_in_bytes)) | |||
return &sm_algo_pack.implbmm_nchw_fma[0]; | |||
} | |||
if (args.grad_filter_meta.group > 1 && | |||
sm_algo_pack.chanwise.is_available_attribute( | |||
args, positive_attr, negative_attr, workspace_limit_in_bytes)) { | |||
@@ -97,11 +97,14 @@ public: | |||
class AlgoMatmul; | |||
class AlgoChanwise; | |||
class AlgoChanwiseSmall; | |||
class AlgoDepthwiseLargeFilter; | |||
class AlgoGroupConvGeneral; | |||
class AlgoBFloat16; | |||
class AlgoInt8NCHW4DotProdImplicitGemm; | |||
class AlgoInt8NCHWDotProdImplicitGemm; | |||
class AlgoInt8NHWCIMMAImplicitGemm; | |||
class AlgoFloat32NCHWFMAImplicitBatchedGemm; | |||
class AlgoFloat16NCHWHMMAImplicitBatchedGemm; | |||
class AlgoPack; | |||
@@ -154,6 +157,8 @@ public: | |||
class AlgoChanwise; | |||
class AlgoGroupConvGeneral; | |||
class AlgoBFloat16; | |||
class AlgoFloat32NCHWFMAImplicitBatchedGemm; | |||
class AlgoFloat16NCHWHMMAImplicitBatchedGemm; | |||
class AlgoPack; | |||
@@ -136,6 +136,15 @@ template <typename EpilogueOp, epilogue::EpilogueType type> | |||
struct init_epilogue_param_; | |||
template <typename EpilogueOp> | |||
struct init_epilogue_param_<EpilogueOp, epilogue::EpilogueType::kLinearCombination> { | |||
using ElementCompute = typename EpilogueOp::ElementCompute; | |||
typename EpilogueOp::Params get(ConvolutionArguments const* conv_args) { | |||
return {*static_cast<ElementCompute const*>(conv_args->alpha), | |||
*static_cast<ElementCompute const*>(conv_args->beta)}; | |||
} | |||
}; | |||
template <typename EpilogueOp> | |||
struct init_epilogue_param_< | |||
EpilogueOp, epilogue::EpilogueType::kBiasAddLinearCombination> { | |||
using ElementCompute = typename EpilogueOp::ElementCompute; | |||
@@ -290,6 +299,159 @@ public: | |||
/////////////////////////////////////////////////////////////////////////////////////////////////// | |||
/// We add a new template class to handle convolution backward filter operation, because | |||
/// the device-level convolution operator of backward filter is different from the | |||
/// others (convolution forward and convolution backward data). | |||
/// But the description object is reused in this wrapper of convolution backward filter. | |||
/// The reason is that we do not want to introduce an another unnecessary structure. | |||
/// TODO: Maybe the device-level operator in cutlass for convoluton forward, backward | |||
/// data and backward filter should be combined. | |||
template <typename Operator_> | |||
class ConvolutionBackwardFilterOperationBase : public Operation { | |||
public: | |||
using Operator = Operator_; | |||
using ElementSrc = typename Operator::ElementSrc; | |||
using LayoutSrc = typename Operator::LayoutSrc; | |||
using ElementDiff = typename Operator::ElementDiff; | |||
using LayoutDiff = typename Operator::LayoutDiff; | |||
using ElementGrad = typename Operator::ElementGrad; | |||
using LayoutGrad = typename Operator::LayoutGrad; | |||
using ElementAccumulator = typename Operator::ElementAccumulator; | |||
ConvolutionBackwardFilterOperationBase(char const* name = "unknown_convolution") { | |||
m_description.name = name; | |||
m_description.provider = Provider::kCUTLASS; | |||
m_description.kind = OperationKind::kConvolution; | |||
m_description.conv_op = Operator::kConvolutionalOperator; | |||
m_description.tile_description.threadblock_shape = make_Coord( | |||
Operator::ThreadblockShape::kM, Operator::ThreadblockShape::kN, | |||
Operator::ThreadblockShape::kK); | |||
m_description.tile_description.threadblock_stages = Operator::kStages; | |||
m_description.tile_description.warp_count = make_Coord( | |||
Operator::ConvolutionKernel::WarpCount::kM, | |||
Operator::ConvolutionKernel::WarpCount::kN, | |||
Operator::ConvolutionKernel::WarpCount::kK); | |||
m_description.tile_description.math_instruction.instruction_shape = make_Coord( | |||
Operator::InstructionShape::kM, Operator::InstructionShape::kN, | |||
Operator::InstructionShape::kK); | |||
m_description.tile_description.math_instruction.element_accumulator = | |||
NumericTypeMap<ElementAccumulator>::kId; | |||
m_description.tile_description.math_instruction.opcode_class = | |||
OpcodeClassMap<typename Operator::OperatorClass>::kId; | |||
m_description.tile_description.math_instruction.math_operation = | |||
MathOperationMap<typename Operator::Operator>::kId; | |||
m_description.tile_description.minimum_compute_capability = | |||
ArchMap<typename Operator::ArchTag, | |||
typename Operator::OperatorClass>::kMin; | |||
m_description.tile_description.maximum_compute_capability = | |||
ArchMap<typename Operator::ArchTag, | |||
typename Operator::OperatorClass>::kMax; | |||
/// src in description -> src in C++ template | |||
m_description.src = | |||
make_TensorDescription<ElementSrc, LayoutSrc>(Operator::kAlignmentSrc); | |||
/// filter in description -> diff in C++ template | |||
m_description.filter = make_TensorDescription<ElementDiff, LayoutDiff>( | |||
Operator::kAlignmentDiff); | |||
/// dst in description -> grad in C++ template | |||
m_description.dst = make_TensorDescription<ElementGrad, LayoutGrad>( | |||
Operator::kAlignmentGrad); | |||
/// because bias tensor is not used in ConvolutionBackwardFilter operation, the | |||
/// following tensor description is a dummy arguments | |||
m_description.bias = make_TensorDescription<ElementGrad, LayoutGrad>( | |||
Operator::kAlignmentGrad); | |||
m_description.convolution_type = Operator::kConvolutionType; | |||
m_description.arch_tag = ArchTagMap<typename Operator::ArchTag>::kId; | |||
m_description.epilogue_type = Operator::EpilogueOutputOp::kType; | |||
m_description.epilogue_count = Operator::EpilogueOutputOp::kCount; | |||
m_description.threadblock_swizzle = | |||
ThreadblockSwizzleMap<typename Operator::ThreadblockSwizzle>::kId; | |||
m_description.special_optimization = Operator::kSpecialOpt; | |||
m_description.gemm_mode = Operator::kGemmMode; | |||
/// ConvolutionBackwardFilter operation is only used for depthwise convolution, | |||
/// so the option without_shared_load is always true | |||
m_description.without_shared_load = true; | |||
} | |||
virtual OperationDescription const& description() const { return m_description; } | |||
protected: | |||
ConvolutionDescription m_description; | |||
}; | |||
/////////////////////////////////////////////////////////////////////////////////////////////////// | |||
template <typename Operator_> | |||
class ConvolutionBackwardFilterOperation | |||
: public ConvolutionBackwardFilterOperationBase<Operator_> { | |||
public: | |||
using Operator = Operator_; | |||
using ElementSrc = typename Operator::ElementSrc; | |||
using LayoutSrc = typename Operator::LayoutSrc; | |||
using ElementDiff = typename Operator::ElementDiff; | |||
using LayoutDiff = typename Operator::LayoutDiff; | |||
using ElementGrad = typename Operator::ElementGrad; | |||
using LayoutGrad = typename Operator::LayoutGrad; | |||
using ElementAccumulator = typename Operator::ElementAccumulator; | |||
using ElementCompute = typename Operator::EpilogueOutputOp::ElementCompute; | |||
using OperatorArguments = typename Operator::Arguments; | |||
ConvolutionBackwardFilterOperation(char const* name = "unknown_gemm") | |||
: ConvolutionBackwardFilterOperationBase<Operator_>(name) {} | |||
virtual Status run( | |||
void const* arguments_ptr, void* device_workspace = nullptr, | |||
cudaStream_t stream = nullptr) const { | |||
cutlass::conv::Operator conv_op = this->m_description.conv_op; | |||
ConvolutionArguments const* conv_args = | |||
reinterpret_cast<ConvolutionArguments const*>(arguments_ptr); | |||
const auto& ps = conv_args->problem_size; | |||
OperatorArguments args; | |||
args.problem_size = ps; | |||
/// src in convolution arguments -> ref_src | |||
args.ref_src = { | |||
static_cast<ElementSrc*>(const_cast<void*>(conv_args->src)), | |||
LayoutSrc::packed(implicit_gemm_tensor_b_extent(conv_op, ps))}; | |||
/// filter in convolution arguments -> ref_diff | |||
args.ref_diff = { | |||
static_cast<ElementDiff*>(const_cast<void*>(conv_args->filter)), | |||
LayoutDiff::packed(implicit_gemm_tensor_a_extent(conv_op, ps))}; | |||
/// dst in convolution arguments -> ref_grad | |||
args.ref_grad = { | |||
static_cast<ElementGrad*>(conv_args->dst), | |||
LayoutGrad::packed(implicit_gemm_tensor_c_extent(conv_op, ps))}; | |||
args.output_op = init_epilogue_param<typename Operator::EpilogueOutputOp>().get( | |||
conv_args); | |||
Operator op; | |||
Status status = op.initialize(args, device_workspace); | |||
if (status != Status::kSuccess) { | |||
return status; | |||
} | |||
return op.run(stream); | |||
} | |||
}; | |||
/////////////////////////////////////////////////////////////////////////////////////////////////// | |||
} // namespace library | |||
} // namespace cutlass | |||
@@ -45,6 +45,11 @@ namespace library { | |||
///////////////////////////////////////////////////////////////////////////////////////////////// | |||
#if ((__CUDACC_VER_MAJOR__ > 10) || \ | |||
(__CUDACC_VER_MAJOR__ == 10 && __CUDACC_VER_MINOR__ >= 1)) | |||
#define CUTLASS_ARCH_MMA_SM70_SUPPORTED 1 | |||
#endif | |||
#if ((__CUDACC_VER_MAJOR__ > 10) || \ | |||
(__CUDACC_VER_MAJOR__ == 10 && __CUDACC_VER_MINOR__ >= 2)) | |||
#define CUTLASS_ARCH_MMA_SM75_SUPPORTED 1 | |||
#endif | |||
@@ -54,8 +59,16 @@ namespace library { | |||
void initialize_all_gemm_simt_operations(Manifest& manifest); | |||
void initialize_all_conv2d_simt_operations(Manifest& manifest); | |||
void initialize_all_deconv_simt_operations(Manifest& manifest); | |||
#if defined(CUTLASS_ARCH_MMA_SM75_SUPPORTED) && CUTLASS_ARCH_MMA_SM75_SUPPORTED | |||
void initialize_all_dwconv2d_fprop_simt_operations(Manifest& manifest); | |||
void initialize_all_dwconv2d_dgrad_simt_operations(Manifest& manifest); | |||
void initialize_all_dwconv2d_wgrad_simt_operations(Manifest& manifest); | |||
#if defined(CUTLASS_ARCH_MMA_SM70_SUPPORTED) && CUTLASS_ARCH_MMA_SM70_SUPPORTED | |||
void initialize_all_gemm_tensorop884_operations(Manifest& manifest); | |||
void initialize_all_dwconv2d_fprop_tensorop884_operations(Manifest& manifest); | |||
void initialize_all_dwconv2d_dgrad_tensorop884_operations(Manifest& manifest); | |||
void initialize_all_dwconv2d_wgrad_tensorop884_operations(Manifest& manifest); | |||
#endif | |||
#if defined(CUTLASS_ARCH_MMA_SM75_SUPPORTED) && CUTLASS_ARCH_MMA_SM75_SUPPORTED | |||
void initialize_all_gemm_tensorop1688_operations(Manifest& manifest); | |||
void initialize_all_conv2d_tensorop8816_operations(Manifest& manifest); | |||
void initialize_all_conv2d_tensorop8832_operations(Manifest& manifest); | |||
@@ -66,8 +79,16 @@ void initialize_all(Manifest& manifest) { | |||
initialize_all_gemm_simt_operations(manifest); | |||
initialize_all_conv2d_simt_operations(manifest); | |||
initialize_all_deconv_simt_operations(manifest); | |||
#if defined(CUTLASS_ARCH_MMA_SM75_SUPPORTED) && CUTLASS_ARCH_MMA_SM75_SUPPORTED | |||
initialize_all_dwconv2d_fprop_simt_operations(manifest); | |||
initialize_all_dwconv2d_dgrad_simt_operations(manifest); | |||
initialize_all_dwconv2d_wgrad_simt_operations(manifest); | |||
#if defined(CUTLASS_ARCH_MMA_SM70_SUPPORTED) && CUTLASS_ARCH_MMA_SM70_SUPPORTED | |||
initialize_all_gemm_tensorop884_operations(manifest); | |||
initialize_all_dwconv2d_fprop_tensorop884_operations(manifest); | |||
initialize_all_dwconv2d_dgrad_tensorop884_operations(manifest); | |||
initialize_all_dwconv2d_wgrad_tensorop884_operations(manifest); | |||
#endif | |||
#if defined(CUTLASS_ARCH_MMA_SM75_SUPPORTED) && CUTLASS_ARCH_MMA_SM75_SUPPORTED | |||
initialize_all_gemm_tensorop1688_operations(manifest); | |||
initialize_all_conv2d_tensorop8816_operations(manifest); | |||
initialize_all_conv2d_tensorop8832_operations(manifest); | |||
@@ -223,6 +223,9 @@ enum class ThreadblockSwizzleID { | |||
kConvolutionFpropTrans, | |||
kConvolutionDgradNCxHWx, | |||
kConvolutionDgradTrans, | |||
kDepthwiseConvolutionFprop, | |||
kDepthwiseConvolutionDgrad, | |||
kDepthwiseConvolutionWgrad, | |||
kInvalid | |||
}; | |||
@@ -570,6 +570,27 @@ struct ThreadblockSwizzleMap< | |||
ThreadblockSwizzleID::kConvolutionDgradTrans; | |||
}; | |||
template <> | |||
struct ThreadblockSwizzleMap< | |||
conv::threadblock::DepthwiseConvolutionFpropThreadblockSwizzle> { | |||
static ThreadblockSwizzleID const kId = | |||
ThreadblockSwizzleID::kDepthwiseConvolutionFprop; | |||
}; | |||
template <> | |||
struct ThreadblockSwizzleMap< | |||
conv::threadblock::DepthwiseConvolutionDgradThreadblockSwizzle> { | |||
static ThreadblockSwizzleID const kId = | |||
ThreadblockSwizzleID::kDepthwiseConvolutionDgrad; | |||
}; | |||
template <> | |||
struct ThreadblockSwizzleMap< | |||
conv::threadblock::DepthwiseConvolutionWgradThreadblockSwizzle> { | |||
static ThreadblockSwizzleID const kId = | |||
ThreadblockSwizzleID::kDepthwiseConvolutionWgrad; | |||
}; | |||
///////////////////////////////////////////////////////////////////////////////////////////////// | |||
template <typename Element, typename Layout> | |||
@@ -99,6 +99,8 @@ ConvolutionKey get_convolution_key_from_desc(const ConvolutionDescription& desc) | |||
key.layout_dst = desc.dst.layout; | |||
key.element_bias = desc.bias.element; | |||
key.layout_bias = desc.bias.layout; | |||
key.element_accumulator = | |||
desc.tile_description.math_instruction.element_accumulator; | |||
key.convolution_type = desc.convolution_type; | |||
@@ -124,6 +126,8 @@ ConvolutionKey get_convolution_key_from_desc(const ConvolutionDescription& desc) | |||
key.stages = desc.tile_description.threadblock_stages; | |||
key.special_optimization = desc.special_optimization; | |||
key.alignment_src = desc.src.alignment; | |||
key.alignment_filter = desc.filter.alignment; | |||
key.without_shared_load = desc.without_shared_load; | |||
return key; | |||
@@ -188,6 +188,7 @@ struct ConvolutionKey { | |||
library::LayoutTypeID layout_dst; | |||
library::NumericTypeID element_bias; | |||
library::LayoutTypeID layout_bias; | |||
NumericTypeID element_accumulator; | |||
conv::ConvType convolution_type; | |||
@@ -206,6 +207,10 @@ struct ConvolutionKey { | |||
epilogue::EpilogueType epilogue_type; | |||
int stages; | |||
conv::SpecialOptimizeDesc special_optimization; | |||
int alignment_src; | |||
int alignment_filter; | |||
bool without_shared_load; | |||
inline bool operator==(ConvolutionKey const& rhs) const { | |||
@@ -215,6 +220,7 @@ struct ConvolutionKey { | |||
(layout_filter == rhs.layout_filter) && | |||
(element_dst == rhs.element_dst) && (layout_dst == rhs.layout_dst) && | |||
(element_bias == rhs.element_bias) && (layout_bias == rhs.layout_bias) && | |||
(element_accumulator == rhs.element_accumulator) && | |||
(convolution_type == rhs.convolution_type) && | |||
(threadblock_shape_m == rhs.threadblock_shape_m) && | |||
(threadblock_shape_n == rhs.threadblock_shape_n) && | |||
@@ -227,6 +233,8 @@ struct ConvolutionKey { | |||
(instruction_shape_k == rhs.instruction_shape_k) && | |||
(epilogue_type == rhs.epilogue_type) && (stages == rhs.stages) && | |||
(special_optimization == rhs.special_optimization) && | |||
(alignment_src == rhs.alignment_src) && | |||
(alignment_filter == rhs.alignment_filter) && | |||
(without_shared_load == rhs.without_shared_load); | |||
} | |||
@@ -254,6 +262,7 @@ struct ConvolutionKey { | |||
"\n layout_dst: " + to_string(layout_dst) + | |||
"\n element_bias: " + to_string(element_bias) + | |||
"\n layout_bias: " + to_string(layout_bias) + | |||
"\n element_accumulator: " + to_string(element_accumulator) + | |||
"\n convolution_type: " + to_string(convolution_type) + | |||
"\n threadblock_shape: " + threadblock_shape_str + | |||
"\n warp_shape: " + warp_shape_str + | |||
@@ -261,6 +270,8 @@ struct ConvolutionKey { | |||
"\n epilogue_type: " + to_string(epilogue_type) + | |||
"\n stages: " + std::to_string(stages) + | |||
"\n special_optimization: " + to_string(special_optimization) + | |||
"\n alignment_src: " + std::to_string(alignment_src) + | |||
"\n alignment_filter: " + std::to_string(alignment_filter) + | |||
"\n without_shared_load: " + to_string(without_shared_load) + "\n}"; | |||
} | |||
}; | |||
@@ -269,7 +280,6 @@ struct ConvolutionKeyHasher { | |||
inline size_t operator()(ConvolutionKey const& key) const { | |||
return Hash() | |||
.update(&key.conv_op, sizeof(key.conv_op)) | |||
.update(&key.conv_op, sizeof(key.conv_op)) | |||
.update(&key.element_src, sizeof(key.element_src)) | |||
.update(&key.layout_src, sizeof(key.layout_src)) | |||
.update(&key.element_filter, sizeof(key.element_filter)) | |||
@@ -278,6 +288,7 @@ struct ConvolutionKeyHasher { | |||
.update(&key.layout_dst, sizeof(key.layout_dst)) | |||
.update(&key.element_bias, sizeof(key.element_bias)) | |||
.update(&key.layout_bias, sizeof(key.layout_bias)) | |||
.update(&key.element_accumulator, sizeof(key.element_accumulator)) | |||
.update(&key.convolution_type, sizeof(key.convolution_type)) | |||
.update(&key.threadblock_shape_m, sizeof(key.threadblock_shape_m)) | |||
.update(&key.threadblock_shape_n, sizeof(key.threadblock_shape_n)) | |||
@@ -291,6 +302,8 @@ struct ConvolutionKeyHasher { | |||
.update(&key.epilogue_type, sizeof(key.epilogue_type)) | |||
.update(&key.stages, sizeof(key.stages)) | |||
.update(&key.special_optimization, sizeof(key.special_optimization)) | |||
.update(&key.alignment_src, sizeof(key.alignment_src)) | |||
.update(&key.alignment_filter, sizeof(key.alignment_filter)) | |||
.update(&key.without_shared_load, sizeof(key.without_shared_load)) | |||
.digest(); | |||
} | |||
@@ -1322,6 +1322,8 @@ static struct { | |||
{"batch_convolution", "BatchConvolution", conv::ConvType::kBatchConvolution}, | |||
{"local", "Local", conv::ConvType::kLocal}, | |||
{"local_share", "LocalShare", conv::ConvType::kLocalShare}, | |||
{"depthwise_convolution", "DepthwiseConvolution", | |||
conv::ConvType::kDepthwiseConvolution}, | |||
}; | |||
/// Converts a ConvType enumerant to a string | |||
@@ -45,6 +45,21 @@ fma2(const __half2 a, const __half2 b, const __half2 c) { | |||
#endif | |||
} | |||
__device__ __forceinline__ __half2 hadd2(const __half2 a, const __half2 b) { | |||
#if __CUDA_ARCH__ >= 530 | |||
return __hadd2(a, b); | |||
#else | |||
return {__float2half(__half2float(a.x) + __half2float(b.x)), | |||
__float2half(__half2float(a.y) + __half2float(b.y))}; | |||
#endif | |||
} | |||
__device__ __forceinline__ float2 | |||
fma2(const __half2 a, const __half2 b, const float2 c) { | |||
return {__half2float(a.x) * __half2float(b.x) + c.x, | |||
__half2float(a.y) * __half2float(b.y) + c.y}; | |||
} | |||
#endif // CUDA_VERSION >= 9000 | |||
} // namespace cuda | |||
@@ -44,7 +44,7 @@ MatrixMulForwardImpl::AlgoPack::AlgoPack() { | |||
for (auto&& algo : simt_float32_gemv_batched_strided) { | |||
all_algos.push_back(&algo); | |||
} | |||
#if CUDA_VERSION >= 10020 | |||
#if CUDA_VERSION >= 10010 | |||
for (auto&& algo : tensorop_float16) { | |||
all_algos.push_back(&algo); | |||
} | |||
@@ -113,21 +113,26 @@ void MatrixMulForwardImpl::AlgoPack::fill_cutlass_algos() { | |||
simt_float32_gemv_batched_strided.emplace_back(128); | |||
simt_float32_gemv_batched_strided.emplace_back(64); | |||
simt_float32_gemv_batched_strided.emplace_back(32); | |||
#define FOREACH_CUTLASS_MATMUL_F16_SHAPES(cb) \ | |||
cb(256, 128, 32, 64, 64, 32, 8, 8, 4); \ | |||
cb(128, 256, 32, 64, 64, 32, 8, 8, 4); \ | |||
cb(128, 128, 32, 64, 64, 32, 8, 8, 4); \ | |||
cb(256, 128, 32, 64, 64, 32, 16, 8, 8); \ | |||
cb(128, 256, 32, 64, 64, 32, 16, 8, 8); \ | |||
#define FOREACH_CUTLASS_MATMUL_MMA_SM70_SHAPES(cb) \ | |||
cb(256, 128, 32, 64, 64, 32, 8, 8, 4); \ | |||
cb(128, 256, 32, 64, 64, 32, 8, 8, 4); \ | |||
cb(128, 128, 32, 64, 64, 32, 8, 8, 4); | |||
#define FOREACH_CUTLASS_MATMUL_MMA_SM75_SHAPES(cb) \ | |||
cb(256, 128, 32, 64, 64, 32, 16, 8, 8); \ | |||
cb(128, 256, 32, 64, 64, 32, 16, 8, 8); \ | |||
cb(128, 128, 32, 64, 64, 32, 16, 8, 8); | |||
#define cb(...) \ | |||
tensorop_float16.emplace_back(AlgoParam{__VA_ARGS__}); \ | |||
tensorop_float16_split_k.emplace_back(AlgoParam{__VA_ARGS__}); | |||
#if CUDA_VERSION >= 10010 | |||
FOREACH_CUTLASS_MATMUL_MMA_SM70_SHAPES(cb) | |||
#endif | |||
#if CUDA_VERSION >= 10020 | |||
FOREACH_CUTLASS_MATMUL_F16_SHAPES(cb) | |||
FOREACH_CUTLASS_MATMUL_MMA_SM75_SHAPES(cb) | |||
#endif | |||
#undef cb | |||
#undef FOREACH_CUTLASS_MATMUL_F16_SHAPES | |||
#undef FOREACH_CUTLASS_MATMUL_MMA_SM70_SHAPES | |||
#undef FOREACH_CUTLASS_MATMUL_MMA_SM75_SHAPES | |||
} | |||
#endif | |||
@@ -350,7 +350,7 @@ private: | |||
std::string m_name; | |||
}; | |||
#if CUDA_VERSION >= 10020 | |||
#if CUDA_VERSION >= 10010 | |||
class MatrixMulForwardImpl::AlgoFloat16TensorOp final | |||
: public AlgoCutlassMatrixMulBase { | |||
public: | |||
@@ -418,7 +418,7 @@ public: | |||
std::vector<AlgoFloat32SIMT> simt_float32; | |||
std::vector<AlgoFloat32SIMTSplitK> simt_float32_split_k; | |||
std::vector<AlgoFloat32SIMTGemvBatchedStrided> simt_float32_gemv_batched_strided; | |||
#if CUDA_VERSION >= 10020 | |||
#if CUDA_VERSION >= 10010 | |||
std::vector<AlgoFloat16TensorOp> tensorop_float16; | |||
std::vector<AlgoFloat16TensorOpSplitK> tensorop_float16_split_k; | |||
#endif | |||
@@ -15,7 +15,7 @@ | |||
#include "src/cuda/matrix_mul/algos.h" | |||
#include "src/cuda/utils.h" | |||
#if CUDA_VERSION >= 10020 | |||
#if CUDA_VERSION >= 10010 | |||
using namespace megdnn; | |||
using namespace cuda; | |||
@@ -15,7 +15,7 @@ | |||
#include "src/cuda/matrix_mul/algos.h" | |||
#include "src/cuda/utils.h" | |||
#if CUDA_VERSION >= 10020 | |||
#if CUDA_VERSION >= 10010 | |||
using namespace megdnn; | |||
using namespace cuda; | |||
@@ -46,9 +46,11 @@ public: | |||
class AlgoFloat32SIMT; | |||
class AlgoFloat32SIMTSplitK; | |||
class AlgoFloat32SIMTGemvBatchedStrided; | |||
#if CUDA_VERSION >= 10010 | |||
class AlgoFloat16TensorOp; | |||
class AlgoFloat16TensorOpSplitK; | |||
#endif | |||
#endif | |||
class AlgoPack; | |||
static const AlgoPack& algo_pack() { return sm_algo_pack; } | |||
@@ -35,6 +35,7 @@ void PaddingForwardImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out dst) { | |||
param().padding_val, stream); \ | |||
} | |||
MEGDNN_FOREACH_COMPUTING_DTYPE(cb) | |||
MEGDNN_FOREACH_QUANTIZED_DTYPE(cb) | |||
#undef cb | |||
} | |||
@@ -60,7 +60,8 @@ __global__ void paddingConst_kernel( | |||
params.src_stride[dim].divisor(); | |||
*/ | |||
} | |||
dst[out_index] = in_src_valid_area ? src[in_index] : padding_val; | |||
dst[out_index] = | |||
in_src_valid_area ? src[in_index] : static_cast<T>(padding_val); | |||
} | |||
} | |||
@@ -256,6 +257,7 @@ void padding_backward_proxy( | |||
const float_t padding_val, cudaStream_t stream); | |||
#define cb(DType) INST(typename DTypeTrait<DType>::ctype) | |||
MEGDNN_FOREACH_COMPUTING_DTYPE(cb) | |||
MEGDNN_FOREACH_QUANTIZED_DTYPE(cb) | |||
#undef cb | |||
#undef INST | |||
@@ -171,7 +171,7 @@ void PaddingForwardImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out dst) { | |||
switch (param().padding_mode) { | |||
case param::Padding::PaddingMode::CONSTANT: | |||
#define cb(DType) \ | |||
if (src.layout.dtype == DType()) { \ | |||
if (src.layout.dtype.enumv() == DTypeTrait<DType>::enumv) { \ | |||
using T = typename DTypeTrait<DType>::ctype; \ | |||
MEGDNN_DISPATCH_CPU_KERN_OPR(exec_const_internal<T>( \ | |||
src.layout.ndim, n, src.ptr<T>(), dst.ptr<T>(), params, \ | |||
@@ -179,28 +179,31 @@ void PaddingForwardImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out dst) { | |||
return; \ | |||
} | |||
MEGDNN_FOREACH_COMPUTING_DTYPE(cb) | |||
MEGDNN_FOREACH_QUANTIZED_DTYPE(cb) | |||
#undef cb | |||
break; | |||
case param::Padding::PaddingMode::REPLICATE: | |||
#define cb(DType) \ | |||
if (src.layout.dtype == DType()) { \ | |||
if (src.layout.dtype.enumv() == DTypeTrait<DType>::enumv) { \ | |||
using T = typename DTypeTrait<DType>::ctype; \ | |||
MEGDNN_DISPATCH_CPU_KERN_OPR(exec_replicate_internal<T>( \ | |||
src.layout.ndim, n, src.ptr<T>(), dst.ptr<T>(), params)); \ | |||
return; \ | |||
} | |||
MEGDNN_FOREACH_COMPUTING_DTYPE(cb) | |||
MEGDNN_FOREACH_QUANTIZED_DTYPE(cb) | |||
#undef cb | |||
break; | |||
case param::Padding::PaddingMode::REFLECT: | |||
#define cb(DType) \ | |||
if (src.layout.dtype == DType()) { \ | |||
if (src.layout.dtype.enumv() == DTypeTrait<DType>::enumv) { \ | |||
using T = typename DTypeTrait<DType>::ctype; \ | |||
MEGDNN_DISPATCH_CPU_KERN_OPR(exec_reflect_internal<T>( \ | |||
src.layout.ndim, n, src.ptr<T>(), dst.ptr<T>(), params)); \ | |||
return; \ | |||
} | |||
MEGDNN_FOREACH_COMPUTING_DTYPE(cb) | |||
MEGDNN_FOREACH_QUANTIZED_DTYPE(cb) | |||
#undef cb | |||
break; | |||
default: | |||
@@ -569,6 +569,7 @@ public: | |||
}); | |||
return ret; | |||
} | |||
megdnn_assert(false, "Expected algo not found: %s\n", policy_name.name.c_str()); | |||
return ret; | |||
} | |||
@@ -20,6 +20,7 @@ | |||
#include "test/common/workspace_wrapper.h" | |||
#include "test/cuda/benchmark.h" | |||
#include "test/cuda/fixture.h" | |||
#include "test/cuda/utils.h" | |||
#include <cuda_profiler_api.h> | |||
#include <cuda_runtime_api.h> | |||
@@ -38,8 +39,10 @@ bool check_need_full_bench() { | |||
} | |||
#endif | |||
Convolution::Param gconv_param(Convolution::Param p) { | |||
Convolution::Param gconv_param(Convolution::Param p, bool io16xc32 = false) { | |||
p.sparse = Convolution::Param::Sparse::GROUP; | |||
if (io16xc32) | |||
p.compute_mode = Convolution::Param::ComputeMode::FLOAT32; | |||
return p; | |||
} | |||
@@ -421,6 +424,209 @@ TEST_F(CUDA, CHANWISE_CONVOLUTION_BACKWARD_FILTER) { | |||
} | |||
} | |||
namespace { | |||
template <typename Op> | |||
struct AlgoCheckerMaker { | |||
static auto make(const char* name, bool* require_algo) { | |||
return AlgoChecker<Op>(name, require_algo); | |||
} | |||
}; | |||
template <> | |||
struct AlgoCheckerMaker<ConvolutionForward> { | |||
static auto make(const char* name, bool* require_algo) { | |||
return AlgoChecker<ConvolutionForward>( | |||
ExecutionPolicyAlgoName{ | |||
"DEFAULT", | |||
{{ConvBiasForward::algo_name<ConvBiasForward::DirectParam>( | |||
name, {}) | |||
.c_str(), | |||
{}}}}, | |||
require_algo); | |||
} | |||
}; | |||
template <typename Op> | |||
void check_chanwise(DType io_type, DType comp_type, Handle* handle, const char* name) { | |||
Checker<Op> checker(handle); | |||
bool require_algo = false; | |||
checker.set_before_exec_callback(AlgoCheckerMaker<Op>::make(name, &require_algo)); | |||
checker.set_dtype(0, io_type).set_dtype(1, io_type).set_dtype(2, io_type); | |||
bool io16xc32 = false; | |||
if (io_type == dtype::Float16()) { | |||
if (comp_type == dtype::Float16()) { | |||
checker.set_epsilon(1e-1); | |||
} else { | |||
io16xc32 = true; | |||
} | |||
} | |||
// dispatch testcase by operation | |||
if (std::is_same<Op, ConvolutionForward>::value) { | |||
// align 8 | |||
checker.set_param(gconv_param({M, 7, 7, 1, 1}, io16xc32)) | |||
.execs({{8, 2, 16, 16}, {2, 1, 1, 15, 15}, {}}); | |||
// align 1 | |||
checker.set_param(gconv_param({M, 7, 7, 1, 1}, io16xc32)) | |||
.execs({{8, 2, 15, 15}, {2, 1, 1, 15, 15}, {}}); | |||
// align 2 | |||
checker.set_param(gconv_param({M, 7, 7, 1, 1}, io16xc32)) | |||
.execs({{8, 2, 14, 14}, {2, 1, 1, 15, 15}, {}}); | |||
// custom padding | |||
checker.set_param(gconv_param({M, 3, 3, 1, 1}, io16xc32)) | |||
.execs({{8, 2, 16, 16}, {2, 1, 1, 15, 15}, {}}); | |||
// custom stride | |||
checker.set_param(gconv_param({M, 7, 7, 2, 2}, io16xc32)) | |||
.execs({{8, 2, 16, 16}, {2, 1, 1, 15, 15}, {}}); | |||
} else if (std::is_same<Op, ConvolutionBackwardData>::value) { | |||
// align 8 | |||
checker.set_param(gconv_param({M, 7, 7, 1, 1}, io16xc32)) | |||
.execs({{2, 1, 1, 15, 15}, {8, 2, 16, 16}, {8, 2, 16, 16}}); | |||
// align 1 | |||
checker.set_param(gconv_param({M, 7, 7, 1, 1}, io16xc32)) | |||
.execs({{2, 1, 1, 15, 15}, {8, 2, 15, 15}, {8, 2, 15, 15}}); | |||
// align 2 | |||
checker.set_param(gconv_param({M, 7, 7, 1, 1}, io16xc32)) | |||
.execs({{2, 1, 1, 15, 15}, {8, 2, 14, 14}, {8, 2, 14, 14}}); | |||
// custom padding | |||
checker.set_param(gconv_param({M, 3, 3, 1, 1}, io16xc32)) | |||
.execs({{2, 1, 1, 15, 15}, {8, 2, 8, 8}, {8, 2, 16, 16}}); | |||
// custom stride | |||
checker.set_param(gconv_param({M, 7, 7, 2, 2}, io16xc32)) | |||
.execs({{2, 1, 1, 15, 15}, {8, 2, 7, 7}, {8, 2, 14, 14}}); | |||
} else if (std::is_same<Op, ConvolutionBackwardFilter>::value) { | |||
// align 8 | |||
checker.set_param(gconv_param({M, 7, 7, 1, 1}, io16xc32)) | |||
.execs({{8, 2, 16, 16}, {8, 2, 16, 16}, {2, 1, 1, 15, 15}}); | |||
// align 1 | |||
checker.set_param(gconv_param({M, 7, 7, 1, 1}, io16xc32)) | |||
.execs({{8, 2, 15, 15}, {8, 2, 15, 15}, {2, 1, 1, 15, 15}}); | |||
// align 2 | |||
checker.set_param(gconv_param({M, 7, 7, 1, 1}, io16xc32)) | |||
.execs({{8, 2, 14, 14}, {8, 2, 14, 14}, {2, 1, 1, 15, 15}}); | |||
// custom padding | |||
checker.set_param(gconv_param({M, 3, 3, 1, 1}, io16xc32)) | |||
.execs({{8, 2, 16, 16}, {8, 2, 8, 8}, {2, 1, 1, 15, 15}}); | |||
// custom stride | |||
checker.set_param(gconv_param({M, 7, 7, 2, 2}, io16xc32)) | |||
.execs({{8, 2, 14, 14}, {8, 2, 7, 7}, {2, 1, 1, 15, 15}}); | |||
} | |||
} | |||
} // namespace | |||
#define MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FMA_KERNEL(cb) \ | |||
cb(1, 128, 128, 8, 32, 64, 8); \ | |||
cb(2, 128, 64, 8, 64, 32, 8); \ | |||
cb(3, 128, 32, 8, 64, 32, 8); \ | |||
cb(4, 64, 128, 8, 32, 64, 8); \ | |||
cb(5, 32, 128, 8, 32, 64, 8); \ | |||
cb(6, 64, 64, 8, 32, 64, 8); \ | |||
cb(7, 32, 64, 8, 32, 64, 8); \ | |||
cb(8, 32, 32, 8, 32, 32, 8); \ | |||
cb(9, 64, 32, 8, 64, 32, 8); | |||
#define cb(tag, tbm, tbn, tbk, wm, wn, wk) \ | |||
TEST_F(CUDA, CHANWISE_CONVOLUTION_FORWARD_CUTLASS_FMA_##tag) { \ | |||
require_compute_capability(6, 1); \ | |||
check_chanwise<ConvolutionForward>( \ | |||
dtype::Float32(), dtype::Float32(), handle_cuda(), \ | |||
"FLOAT32_NCHW_FMA_IMPLICIT_BATCHED_GEMM_" #tbm "X" #tbn "X" #tbk \ | |||
"_" #wm "X" #wn "X" #wk "_2stage"); \ | |||
} | |||
MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FMA_KERNEL(cb) | |||
#undef cb | |||
#define cb(tag, tbm, tbn, tbk, wm, wn, wk) \ | |||
TEST_F(CUDA, CHANWISE_CONVOLUTION_BACKWARD_DATA_CUTLASS_FMA_##tag) { \ | |||
require_compute_capability(6, 1); \ | |||
check_chanwise<ConvolutionBackwardData>( \ | |||
dtype::Float32(), dtype::Float32(), handle_cuda(), \ | |||
"FLOAT32_NCHW_FMA_IMPLICIT_BATCHED_GEMM_" #tbm "X" #tbn "X" #tbk \ | |||
"_" #wm "X" #wn "X" #wk "_2stage"); \ | |||
} | |||
MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FMA_KERNEL(cb) | |||
#undef cb | |||
#define cb(tag, tbm, tbn, tbk, wm, wn, wk) \ | |||
TEST_F(CUDA, CHANWISE_CONVOLUTION_BACKWARD_FILTER_CUTLASS_FMA_##tag) { \ | |||
require_compute_capability(6, 1); \ | |||
check_chanwise<ConvolutionBackwardFilter>( \ | |||
dtype::Float32(), dtype::Float32(), handle_cuda(), \ | |||
"FLOAT32_NCHW_FMA_IMPLICIT_BATCHED_GEMM_" #tbm "X" #tbn "X" #tbk \ | |||
"_" #wm "X" #wn "X" #wk "_2stage"); \ | |||
} | |||
MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FMA_KERNEL(cb) | |||
#undef cb | |||
#undef MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FMA_KERNEL | |||
#if CUDA_VERSION >= 10010 | |||
#define MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_HMMA_KERNEL(cb) \ | |||
cb(1, 128, 128, 32, 32, 32, 32); \ | |||
cb(2, 128, 256, 32, 64, 64, 32); \ | |||
cb(3, 128, 64, 32, 32, 32, 32); \ | |||
cb(4, 64, 128, 32, 32, 32, 32); \ | |||
cb(5, 64, 64, 32, 32, 32, 32); | |||
#else | |||
// hmma instruction need cuda version >= 10.2, disable hmma testcases in this path | |||
#define MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_HMMA_KERNEL(cb) | |||
#endif | |||
// check both ioc16 and io16xc32 | |||
#define cb(tag, tbm, tbn, tbk, wm, wn, wk) \ | |||
TEST_F(CUDA, CHANWISE_CONVOLUTION_FORWARD_CUTLASS_HMMA_##tag) { \ | |||
require_compute_capability(7, 0); \ | |||
check_chanwise<ConvolutionForward>( \ | |||
dtype::Float16(), dtype::Float16(), handle_cuda(), \ | |||
"FLOAT16_NCHW_HMMA_IMPLICIT_BATCHED_GEMM_" #tbm "X" #tbn "X" #tbk \ | |||
"_" #wm "X" #wn "X" #wk "_2stage"); \ | |||
check_chanwise<ConvolutionForward>( \ | |||
dtype::Float16(), dtype::Float32(), handle_cuda(), \ | |||
"FLOAT16_NCHW_HMMA_IMPLICIT_BATCHED_GEMM_" #tbm "X" #tbn "X" #tbk \ | |||
"_" #wm "X" #wn "X" #wk "_2stage"); \ | |||
} | |||
MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_HMMA_KERNEL(cb) | |||
#undef cb | |||
#define cb(tag, tbm, tbn, tbk, wm, wn, wk) \ | |||
TEST_F(CUDA, CHANWISE_CONVOLUTION_BACKWARD_DATA_CUTLASS_HMMA_##tag) { \ | |||
require_compute_capability(7, 0); \ | |||
check_chanwise<ConvolutionBackwardData>( \ | |||
dtype::Float16(), dtype::Float16(), handle_cuda(), \ | |||
"FLOAT16_NCHW_HMMA_IMPLICIT_BATCHED_GEMM_" #tbm "X" #tbn "X" #tbk \ | |||
"_" #wm "X" #wn "X" #wk "_mma8X8X4_2stage"); \ | |||
check_chanwise<ConvolutionBackwardData>( \ | |||
dtype::Float16(), dtype::Float32(), handle_cuda(), \ | |||
"FLOAT16_NCHW_HMMA_IMPLICIT_BATCHED_GEMM_" #tbm "X" #tbn "X" #tbk \ | |||
"_" #wm "X" #wn "X" #wk "_mma8X8X4_2stage"); \ | |||
} | |||
MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_HMMA_KERNEL(cb) | |||
#undef cb | |||
#define cb(tag, tbm, tbn, tbk, wm, wn, wk) \ | |||
TEST_F(CUDA, CHANWISE_CONVOLUTION_BACKWARD_FILTER_CUTLASS_HMMA_##tag) { \ | |||
require_compute_capability(7, 0); \ | |||
check_chanwise<ConvolutionBackwardData>( \ | |||
dtype::Float16(), dtype::Float32(), handle_cuda(), \ | |||
"FLOAT16_NCHW_HMMA_IMPLICIT_BATCHED_GEMM_" #tbm "X" #tbn "X" #tbk \ | |||
"_" #wm "X" #wn "X" #wk "_mma8X8X4_2stage"); \ | |||
} | |||
MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_HMMA_KERNEL(cb) | |||
#undef cb | |||
#undef MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FWD_HMMA_KERNEL | |||
#if MEGDNN_WITH_BENCHMARK | |||
TEST_F(CUDA, CHANWISE_CONVOLUTION_FORWARD_BENCH_CHECK) { | |||
auto handle = handle_cuda(); | |||
@@ -1123,6 +1329,228 @@ TEST_F(CUDA, BENCHMARK_CHANWISE_CONV_BWD_FILTER) { | |||
// clang-format on | |||
} | |||
TEST_F(CUDA, BENCHMARK_CHANWISE_CONV_FORWARD_LARGE_KERNEL) { | |||
CUBenchmarker<ConvolutionForward> bencher(handle_cuda()); | |||
size_t RUNS = 100; | |||
bencher.set_display(false).set_times(RUNS); | |||
std::unique_ptr<OprProxy<ConvolutionForward>> proxy{ | |||
new OprProxy<ConvolutionForward>{true}}; | |||
bencher.set_proxy(proxy); | |||
Convolution::Param param; | |||
param.format = ConvBias::Param::Format::NCHW; | |||
param.sparse = Convolution::Param::Sparse::GROUP; | |||
NormalRNG rng; | |||
auto run = [&](size_t batch, size_t c, size_t ih, size_t iw, size_t f, size_t s) { | |||
param.pad_h = f / 2; | |||
param.pad_w = f / 2; | |||
param.stride_h = s; | |||
param.stride_w = s; | |||
param.compute_mode = param::Convolution::ComputeMode::DEFAULT; | |||
TensorShape src = {batch, c, ih, iw}, filter = {c, 1, 1, f, f}; | |||
TensorLayout dst_layout; | |||
auto opr = handle_cuda()->create_operator<Convolution>(); | |||
opr->param() = param; | |||
opr->deduce_layout( | |||
{src, dtype::Float32()}, {filter, dtype::Float32()}, dst_layout); | |||
float bandwith = static_cast<float>( | |||
src.total_nr_elems() + filter.total_nr_elems() + | |||
dst_layout.total_nr_elems()) / | |||
(1024 * 1024 * 1024) * 1e3; | |||
bencher.set_param(param) | |||
.set_dtype(0, dtype::Float32()) | |||
.set_dtype(1, dtype::Float32()) | |||
.set_dtype(2, dtype::Float32()) | |||
.set_rng(0, &rng) | |||
.set_rng(1, &rng); | |||
bencher.proxy()->target_execution_policy = {}; | |||
auto time_in_ms_fp32 = bencher.execs({src, filter, {}}) / RUNS; | |||
bencher.set_param(param) | |||
.set_dtype(0, dtype::Float16()) | |||
.set_dtype(1, dtype::Float16()) | |||
.set_dtype(2, dtype::Float16()) | |||
.set_rng(0, &rng) | |||
.set_rng(1, &rng); | |||
bencher.proxy()->target_execution_policy = {}; | |||
auto time_in_ms_fp16 = bencher.execs({src, filter, {}}) / RUNS; | |||
bencher.proxy()->target_execution_policy.algo.reset(); | |||
param.compute_mode = param::Convolution::ComputeMode::FLOAT32; | |||
bencher.set_param(param); | |||
auto time_in_ms_pseudo_fp16 = bencher.execs({src, filter, {}}) / RUNS; | |||
printf("stride=%zu src=%s, filter=%s, float32: %.2fms %.2fGB/s " | |||
"float16: %.2fms %.2fGB/s " | |||
"pseudo float16: %.2fms %.2fGB/s " | |||
"speedup: " | |||
"%0.2f (fp16/fp32) %.2f (fp16/pseudo fp16)\n", | |||
s, src.to_string().c_str(), filter.to_string().c_str(), time_in_ms_fp32, | |||
bandwith * 4 / time_in_ms_fp32, time_in_ms_fp16, | |||
bandwith * 2 / time_in_ms_fp16, time_in_ms_pseudo_fp16, | |||
bandwith * 2 / time_in_ms_pseudo_fp16, time_in_ms_fp32 / time_in_ms_fp16, | |||
time_in_ms_pseudo_fp16 / time_in_ms_fp16); | |||
}; | |||
// clang-format off | |||
for (size_t b : {32, 64}) | |||
for (size_t f : {3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}) { | |||
run(b, 384, 32, 32, f, 1); | |||
run(b, 384, 64, 64, f, 1); | |||
} | |||
// clang-format on | |||
} | |||
TEST_F(CUDA, BENCHMARK_CHANWISE_CONV_BACKWARD_DATA_LARGE_KERNEL) { | |||
CUBenchmarker<ConvolutionBackwardData> bencher(handle_cuda()); | |||
size_t RUNS = 100; | |||
bencher.set_display(false).set_times(RUNS); | |||
std::unique_ptr<OprProxy<ConvolutionBackwardData>> proxy{ | |||
new OprProxy<ConvolutionBackwardData>{true}}; | |||
bencher.set_proxy(proxy); | |||
Convolution::Param param; | |||
param.format = ConvBias::Param::Format::NCHW; | |||
param.sparse = Convolution::Param::Sparse::GROUP; | |||
NormalRNG rng; | |||
auto run = [&](size_t batch, size_t c, size_t ih, size_t iw, size_t f, size_t s) { | |||
param.pad_h = f / 2; | |||
param.pad_w = f / 2; | |||
param.stride_h = s; | |||
param.stride_w = s; | |||
param.compute_mode = param::Convolution::ComputeMode::DEFAULT; | |||
TensorShape src = {batch, c, ih, iw}, filter = {c, 1, 1, f, f}; | |||
TensorLayout dst_layout; | |||
auto opr = handle_cuda()->create_operator<Convolution>(); | |||
opr->param() = param; | |||
opr->deduce_layout( | |||
{src, dtype::Float32()}, {filter, dtype::Float32()}, dst_layout); | |||
float bandwith = static_cast<float>( | |||
src.total_nr_elems() + filter.total_nr_elems() + | |||
dst_layout.total_nr_elems()) / | |||
(1024 * 1024 * 1024) * 1e3; | |||
bencher.set_param(param) | |||
.set_dtype(0, dtype::Float32()) | |||
.set_dtype(1, dtype::Float32()) | |||
.set_dtype(2, dtype::Float32()) | |||
.set_rng(0, &rng) | |||
.set_rng(1, &rng); | |||
bencher.proxy()->target_execution_policy = {}; | |||
auto time_in_ms_fp32 = bencher.execs({filter, src, src}) / RUNS; | |||
bencher.set_param(param) | |||
.set_dtype(0, dtype::Float16()) | |||
.set_dtype(1, dtype::Float16()) | |||
.set_dtype(2, dtype::Float16()) | |||
.set_rng(0, &rng) | |||
.set_rng(1, &rng); | |||
bencher.proxy()->target_execution_policy = {}; | |||
auto time_in_ms_fp16 = bencher.execs({filter, src, src}) / RUNS; | |||
bencher.proxy()->target_execution_policy.algo.reset(); | |||
param.compute_mode = param::Convolution::ComputeMode::FLOAT32; | |||
bencher.set_param(param); | |||
auto time_in_ms_pseudo_fp16 = bencher.execs({filter, src, src}) / RUNS; | |||
printf("stride=%zu src=%s, filter=%s, float32: %.2fms %.2fGB/s " | |||
"float16: %.2fms %.2fGB/s " | |||
"pseudo float16: %.2fms %.2fGB/s " | |||
"speedup: " | |||
"%0.2f (fp16/fp32) %.2f (fp16/pseudo fp16)\n", | |||
s, src.to_string().c_str(), filter.to_string().c_str(), time_in_ms_fp32, | |||
bandwith * 4 / time_in_ms_fp32, time_in_ms_fp16, | |||
bandwith * 2 / time_in_ms_fp16, time_in_ms_pseudo_fp16, | |||
bandwith * 2 / time_in_ms_pseudo_fp16, time_in_ms_fp32 / time_in_ms_fp16, | |||
time_in_ms_pseudo_fp16 / time_in_ms_fp16); | |||
}; | |||
// clang-format off | |||
for (size_t b : {32, 64}) | |||
for (size_t f : {3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}) { | |||
run(b, 384, 32, 32, f, 1); | |||
run(b, 384, 64, 64, f, 1); | |||
} | |||
// clang-format on | |||
} | |||
TEST_F(CUDA, BENCHMARK_CHANWISE_CONV_BACKWARD_FILTER_LARGE_KERNEL) { | |||
CUBenchmarker<ConvolutionBackwardFilter> bencher(handle_cuda()); | |||
size_t RUNS = 100; | |||
bencher.set_display(false).set_times(RUNS); | |||
std::unique_ptr<OprProxy<ConvolutionBackwardFilter>> proxy{ | |||
new OprProxy<ConvolutionBackwardFilter>{true}}; | |||
bencher.set_proxy(proxy); | |||
Convolution::Param param; | |||
param.format = ConvBias::Param::Format::NCHW; | |||
param.sparse = Convolution::Param::Sparse::GROUP; | |||
NormalRNG rng; | |||
auto run = [&](size_t batch, size_t c, size_t ih, size_t iw, size_t f, size_t s) { | |||
param.pad_h = f / 2; | |||
param.pad_w = f / 2; | |||
param.stride_h = s; | |||
param.stride_w = s; | |||
param.compute_mode = param::Convolution::ComputeMode::DEFAULT; | |||
TensorShape src = {batch, c, ih, iw}, filter = {c, 1, 1, f, f}; | |||
TensorLayout dst_layout; | |||
auto opr = handle_cuda()->create_operator<Convolution>(); | |||
opr->param() = param; | |||
opr->deduce_layout( | |||
{src, dtype::Float32()}, {filter, dtype::Float32()}, dst_layout); | |||
float bandwith = static_cast<float>( | |||
src.total_nr_elems() + filter.total_nr_elems() + | |||
dst_layout.total_nr_elems()) / | |||
(1024 * 1024 * 1024) * 1e3; | |||
bencher.set_param(param) | |||
.set_dtype(0, dtype::Float32()) | |||
.set_dtype(1, dtype::Float32()) | |||
.set_dtype(2, dtype::Float32()) | |||
.set_rng(0, &rng) | |||
.set_rng(1, &rng); | |||
bencher.proxy()->target_execution_policy = {}; | |||
auto time_in_ms_fp32 = bencher.execs({src, src, filter}) / RUNS; | |||
bencher.set_param(param) | |||
.set_dtype(0, dtype::Float16()) | |||
.set_dtype(1, dtype::Float16()) | |||
.set_dtype(2, dtype::Float16()) | |||
.set_rng(0, &rng) | |||
.set_rng(1, &rng); | |||
bencher.proxy()->target_execution_policy = {}; | |||
param.compute_mode = param::Convolution::ComputeMode::FLOAT32; | |||
bencher.set_param(param); | |||
auto time_in_ms_pseudo_fp16 = bencher.execs({src, src, filter}) / RUNS; | |||
printf("stride=%zu src=%s, filter=%s, float32: %.2fms %.2fGB/s " | |||
"pseudo float16: %.2fms %.2fGB/s " | |||
"speedup: " | |||
"%0.2f (fp16/fp32) \n", | |||
s, src.to_string().c_str(), filter.to_string().c_str(), time_in_ms_fp32, | |||
bandwith * 4 / time_in_ms_fp32, time_in_ms_pseudo_fp16, | |||
bandwith * 2 / time_in_ms_pseudo_fp16, | |||
time_in_ms_fp32 / time_in_ms_pseudo_fp16); | |||
}; | |||
// clang-format off | |||
for (size_t b : {32, 64}) | |||
for (size_t f : {3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}) { | |||
run(b, 384, 32, 32, f, 1); | |||
run(b, 384, 64, 64, f, 1); | |||
} | |||
// clang-format on | |||
} | |||
#endif | |||
// vim: syntax=cpp.doxygen |
@@ -695,6 +695,78 @@ TEST_F(CUDA, CONV_BIAS_FORWARD_CHANWISE_SMALL) { | |||
} | |||
} | |||
TEST_F(CUDA, CONV_BIAS_FORWARD_DEPTHWISE_LARGE_FILTER) { | |||
Checker<ConvBiasForward> checker(handle_cuda()); | |||
checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>( | |||
ConvBiasForward::algo_name<ConvBias::DirectParam>( | |||
"DEPTHWISE_LARGE_FILTER", {}) | |||
.c_str())); | |||
for (auto dtype : std::vector<DType> { | |||
dtype::Float32(), | |||
#if CUDA_VERSION >= 9000 | |||
dtype::Float16() | |||
#endif | |||
}) { | |||
auto run = [&checker, &dtype]( | |||
size_t n, size_t g, size_t h, size_t fh, size_t padding, | |||
size_t stride) { | |||
param::ConvBias cur_param; | |||
cur_param.mode = param::ConvBias::Mode::CROSS_CORRELATION; | |||
cur_param.sparse = ConvBias::Param::Sparse::GROUP; | |||
checker.set_dtype(0, dtype) | |||
.set_dtype(1, dtype) | |||
.set_dtype(2, dtype) | |||
.set_dtype(3, dtype) | |||
.set_dtype(4, dtype); | |||
float scale = 64.f / sqrt(fh * fh); | |||
UniformFloatRNG rng(scale, 2 * scale); | |||
checker.set_rng(0, &rng) | |||
.set_rng(1, &rng) | |||
.set_rng(2, &rng) | |||
.set_rng(3, &rng) | |||
.set_rng(4, &rng); | |||
if (dtype.enumv() == DTypeEnum::Float16) { | |||
checker.set_epsilon(1e-1); | |||
} | |||
cur_param.pad_h = cur_param.pad_w = padding; | |||
cur_param.stride_h = cur_param.stride_w = stride; | |||
checker.set_param(cur_param).execs( | |||
{{n, g, h, h}, {g, 1, 1, fh, fh}, {}, {}, {}}); | |||
}; | |||
run(4, 8, 32, 5, 5 / 2, 1); | |||
run(4, 8, 32, 7, 7 / 2, 1); | |||
run(4, 8, 32, 9, 9 / 2, 1); | |||
run(4, 8, 32, 11, 11 / 2, 1); | |||
run(4, 8, 32, 13, 13 / 2, 1); | |||
run(4, 8, 32, 15, 15 / 2, 1); | |||
run(4, 8, 32, 17, 17 / 2, 1); | |||
run(4, 8, 32, 19, 19 / 2, 1); | |||
run(4, 8, 32, 21, 21 / 2, 1); | |||
run(4, 8, 32, 23, 23 / 2, 1); | |||
run(4, 8, 32, 25, 25 / 2, 1); | |||
run(4, 8, 32, 27, 27 / 2, 1); | |||
run(4, 8, 32, 29, 29 / 2, 1); | |||
run(4, 8, 32, 31, 31 / 2, 1); | |||
run(4, 8, 64, 5, 5 / 3, 2); | |||
run(4, 8, 64, 7, 7 / 3, 2); | |||
run(4, 8, 64, 9, 9 / 3, 2); | |||
run(4, 8, 64, 11, 11 / 3, 2); | |||
run(4, 8, 64, 13, 13 / 3, 2); | |||
run(4, 8, 64, 15, 15 / 3, 2); | |||
run(4, 8, 64, 17, 17 / 3, 2); | |||
run(4, 8, 64, 19, 19 / 3, 2); | |||
run(4, 8, 64, 21, 21 / 3, 2); | |||
run(4, 8, 64, 23, 23 / 3, 2); | |||
run(4, 8, 64, 25, 25 / 3, 2); | |||
run(4, 8, 64, 27, 27 / 3, 2); | |||
run(4, 8, 64, 29, 29 / 3, 2); | |||
run(4, 8, 64, 31, 31 / 3, 2); | |||
run(1, 2, 128, 31, 10, 2); | |||
run(1, 2, 256, 31, 10, 2); | |||
} | |||
} | |||
TEST_F(CUDA, CONV_BIAS_FORWARD_CHANWISE_8x8x32) { | |||
require_compute_capability(6, 1); | |||
Checker<ConvBiasForward> checker(handle_cuda()); | |||
@@ -1033,7 +1105,7 @@ TEST_F(CUDA, CONV_BIAS_FORWARD_GROUP) { | |||
ConvBiasForward::algo_name<ConvBiasForward::DirectParam>( | |||
"CUDA:GROUP_CONV", {}) | |||
.c_str(), | |||
{{"CUDNN", {}}}})); | |||
{{"DEFAULT:CUDNN", {}}}})); | |||
ConvBias::Param param; | |||
param.sparse = ConvBias::Param::Sparse::GROUP; | |||
param.nonlineMode = mode; | |||
@@ -1093,8 +1165,11 @@ TEST_F(CUDA, CONV_BIAS_FORWARD_GROUP) { | |||
run(2, 32, 7, 7, 3, 3, 64, 1, 1, 1, 1, 1, 1, 4, nlmode); | |||
// strided case | |||
run(2, 32, 7, 7, 3, 3, 64, 0, 0, 2, 2, 1, 1, 8, nlmode); | |||
// dilate conv is supported in CUDNN since version 7.5.0 | |||
#if CUDNN_VERSION >= 7500 | |||
// dilated case | |||
run(2, 32, 7, 7, 3, 3, 64, 0, 0, 1, 1, 2, 2, 8, nlmode); | |||
#endif | |||
} | |||
} | |||
@@ -1471,6 +1546,132 @@ TEST_F(CUDA, BENCHMARK_CONV_BIAS_FORWARD_TENSORCORE_INT8) { | |||
run_bench(256, 512, 7, 7, 512, 3, 3, 1, 1, 1000); | |||
run_bench(256, 512, 7, 7, 2048, 1, 1, 1, 1, 1000); | |||
} | |||
TEST_F(CUDA, BENCHMARK_CONV_BIAS_FORWARD_DEPTHWISE_LARGE_FILTER_FP16) { | |||
require_compute_capability(7, 5); | |||
Benchmarker<ConvBiasForward> bencher(handle_cuda()); | |||
bencher.set_display(false); | |||
bencher.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBiasForward>( | |||
ConvBiasForward::algo_name<ConvBiasForward::DirectParam>( | |||
"DEPTHWISE_LARGE_FILTER", {}) | |||
.c_str())); | |||
ConvBias::Param param; | |||
param.format = ConvBias::Param::Format::NCHW; | |||
using NonlineMode = ConvBias::Param::NonlineMode; | |||
param.nonlineMode = NonlineMode::IDENTITY; | |||
param.sparse = ConvBias::Param::Sparse::GROUP; | |||
auto run_bench = [&](size_t batch, size_t g, size_t hi, size_t wi, size_t fh, | |||
size_t fw, size_t sh, size_t sw, size_t nr_times) { | |||
param.pad_h = fh / 2; | |||
param.pad_w = fw / 2; | |||
param.stride_h = sh; | |||
param.stride_w = sw; | |||
bencher.set_param(param) | |||
.set_dtype(0, dtype::Float16()) | |||
.set_dtype(1, dtype::Float16()) | |||
.set_dtype(2, dtype::Float16()) | |||
.set_dtype(4, dtype::Float16()); | |||
bencher.set_times(nr_times); | |||
size_t ho = infer_conv_shape(hi, fh, sh, param.pad_h); | |||
size_t wo = infer_conv_shape(wi, fw, sw, param.pad_w); | |||
TensorShape inp{batch, g, hi, wi}, kern{g, 1, 1, fh, fw}, out{batch, g, ho, wo}; | |||
float bandwith = static_cast<float>( | |||
inp.total_nr_elems() + kern.total_nr_elems() + | |||
out.total_nr_elems()) / | |||
(1024 * 1024 * 1024) * 1e3; | |||
auto time_in_ms = bencher.execs({inp, kern, {}, {}, out}) / nr_times; | |||
auto ops = 2.0 * batch * g * ho * wo * fh * fw / (time_in_ms * 1e-3) * 1e-12; | |||
printf("chanwise_depthwise_large_filter: inp=%s, kern=%s, out=%s, time: " | |||
"%.2fms, " | |||
"perf: %.2f Tops bandwidth: %.2fGB/s.\n", | |||
inp.to_string().c_str(), kern.to_string().c_str(), | |||
out.to_string().c_str(), time_in_ms, ops, bandwith * 4 / time_in_ms); | |||
}; | |||
run_bench(64, 384, 32, 32, 3, 3, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 5, 5, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 7, 7, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 9, 9, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 11, 11, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 13, 13, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 15, 15, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 17, 17, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 19, 19, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 21, 21, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 23, 23, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 25, 25, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 27, 27, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 29, 29, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 31, 31, 1, 1, 10); | |||
} | |||
TEST_F(CUDA, BENCHMARK_CONV_BIAS_FORWARD_DEPTHWISE_LARGE_FILTER_FP32) { | |||
require_compute_capability(7, 5); | |||
Benchmarker<ConvBiasForward> bencher(handle_cuda()); | |||
bencher.set_display(false); | |||
bencher.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBiasForward>( | |||
ConvBiasForward::algo_name<ConvBiasForward::DirectParam>( | |||
"DEPTHWISE_LARGE_FILTER", {}) | |||
.c_str())); | |||
ConvBias::Param param; | |||
param.format = ConvBias::Param::Format::NCHW; | |||
using NonlineMode = ConvBias::Param::NonlineMode; | |||
param.nonlineMode = NonlineMode::IDENTITY; | |||
param.sparse = ConvBias::Param::Sparse::GROUP; | |||
auto run_bench = [&](size_t batch, size_t g, size_t hi, size_t wi, size_t fh, | |||
size_t fw, size_t sh, size_t sw, size_t nr_times) { | |||
param.pad_h = fh / 2; | |||
param.pad_w = fw / 2; | |||
param.stride_h = sh; | |||
param.stride_w = sw; | |||
bencher.set_param(param) | |||
.set_dtype(0, dtype::Float32()) | |||
.set_dtype(1, dtype::Float32()) | |||
.set_dtype(2, dtype::Float32()) | |||
.set_dtype(4, dtype::Float32()); | |||
bencher.set_times(nr_times); | |||
size_t ho = infer_conv_shape(hi, fh, sh, param.pad_h); | |||
size_t wo = infer_conv_shape(wi, fw, sw, param.pad_w); | |||
TensorShape inp{batch, g, hi, wi}, kern{g, 1, 1, fh, fw}, out{batch, g, ho, wo}; | |||
float bandwith = static_cast<float>( | |||
inp.total_nr_elems() + kern.total_nr_elems() + | |||
out.total_nr_elems()) / | |||
(1024 * 1024 * 1024) * 1e3; | |||
auto time_in_ms = bencher.execs({inp, kern, {}, {}, out}) / nr_times; | |||
auto ops = 2.0 * batch * g * ho * wo * fh * fw / (time_in_ms * 1e-3) * 1e-12; | |||
printf("chanwise_depthwise_large_filter: inp=%s, kern=%s, out=%s, time: " | |||
"%.2fms, " | |||
"perf: %.2f Tops bandwidth: %.2fGB/s.\n", | |||
inp.to_string().c_str(), kern.to_string().c_str(), | |||
out.to_string().c_str(), time_in_ms, ops, bandwith * 4 / time_in_ms); | |||
}; | |||
run_bench(64, 384, 32, 32, 3, 3, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 5, 5, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 7, 7, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 9, 9, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 11, 11, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 13, 13, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 15, 15, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 17, 17, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 19, 19, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 21, 21, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 23, 23, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 25, 25, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 27, 27, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 29, 29, 1, 1, 10); | |||
run_bench(64, 384, 32, 32, 31, 31, 1, 1, 10); | |||
} | |||
#endif | |||
#endif | |||
@@ -724,6 +724,70 @@ TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_1) { | |||
TensorLayoutArray{filter, dst, src}); | |||
} | |||
TEST_F(CUDA, CONVOLUTION_BACKWARD_DEPTHWISE_LARGE_FILTER) { | |||
Checker<ConvolutionBackwardData> checker(handle_cuda()); | |||
checker.set_before_exec_callback( | |||
AlgoChecker<ConvolutionBackwardData>("DEPTHWISE_LARGE_FILTER")); | |||
for (auto dtype : std::vector<DType> { | |||
dtype::Float32(), | |||
#if CUDA_VERSION >= 9000 | |||
dtype::Float16() | |||
#endif | |||
}) { | |||
auto run = [&checker, &dtype]( | |||
size_t n, size_t g, size_t h, size_t fh, size_t padding, | |||
size_t stride) { | |||
param::Convolution param; | |||
param.stride_h = param.stride_w = stride; | |||
param.pad_h = param.pad_w = padding; | |||
param.mode = Convolution::Mode::CROSS_CORRELATION; | |||
param.sparse = param::Convolution::Sparse::GROUP; | |||
checker.set_dtype(0, dtype).set_dtype(1, dtype).set_dtype(2, dtype); | |||
float scale = 64.f / sqrt(fh * fh); | |||
UniformFloatRNG rng(scale, scale * 2); | |||
checker.set_rng(0, &rng).set_rng(1, &rng).set_rng(2, &rng); | |||
if (dtype.enumv() == DTypeEnum::Float16) | |||
checker.set_epsilon(1e-1); | |||
checker.set_param(param).execs( | |||
{{g, 1, 1, fh, fh}, | |||
{n, g, (h + 2 * padding - fh + 1) / stride, | |||
(h + 2 * padding - fh + 1) / stride}, | |||
{n, g, h, h}}); | |||
}; | |||
run(4, 8, 32, 5, 5 / 2, 1); | |||
run(4, 8, 32, 7, 7 / 2, 1); | |||
run(4, 8, 32, 9, 9 / 2, 1); | |||
run(4, 8, 32, 11, 11 / 2, 1); | |||
run(4, 8, 32, 13, 13 / 2, 1); | |||
run(4, 8, 32, 15, 15 / 2, 1); | |||
run(4, 8, 32, 17, 17 / 2, 1); | |||
run(4, 8, 32, 19, 19 / 2, 1); | |||
run(4, 8, 32, 21, 21 / 2, 1); | |||
run(4, 8, 32, 23, 23 / 2, 1); | |||
run(4, 8, 32, 25, 25 / 2, 1); | |||
run(4, 8, 32, 27, 27 / 2, 1); | |||
run(4, 8, 32, 29, 29 / 2, 1); | |||
run(4, 8, 32, 31, 31 / 2, 1); | |||
run(4, 8, 64, 5, 5 / 2, 2); | |||
run(4, 8, 64, 7, 7 / 3, 2); | |||
run(4, 8, 64, 9, 9 / 3, 2); | |||
run(4, 8, 64, 11, 11 / 3, 2); | |||
run(4, 8, 64, 13, 13 / 3, 2); | |||
run(4, 8, 64, 15, 15 / 3, 2); | |||
run(4, 8, 64, 17, 17 / 3, 2); | |||
run(4, 8, 64, 19, 19 / 3, 2); | |||
run(4, 8, 64, 21, 21 / 3, 2); | |||
run(4, 8, 64, 23, 23 / 3, 2); | |||
run(4, 8, 64, 25, 25 / 3, 2); | |||
run(4, 8, 64, 27, 27 / 3, 2); | |||
run(4, 8, 64, 29, 29 / 3, 2); | |||
run(4, 8, 64, 31, 31 / 3, 2); | |||
run(1, 2, 128, 31, 31 / 3, 2); | |||
run(1, 2, 256, 31, 31 / 3, 2); | |||
} | |||
} | |||
#if MEGDNN_WITH_BENCHMARK | |||
TEST_F(CUDA, CONV_FWD_BENCHMARK) { | |||
auto run = [&](size_t N, size_t OC, size_t IC, size_t IH, size_t IW, size_t SH = 1, | |||
@@ -901,6 +965,104 @@ TEST_F(CUDA, CONVOLUTION_BWD_DATA_BENCHMARK) { | |||
run(32, 64, 64, 56, 56, 1, 1, 0); | |||
} | |||
TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_DATA_DEPTHWISE_LARGE_FILTER_FP32) { | |||
CUBenchmarker<ConvolutionBackwardData> bencher{handle_cuda()}; | |||
bencher.set_display(false); | |||
bencher.set_before_exec_callback( | |||
AlgoChecker<ConvolutionBackwardData>("DEPTHWISE_LARGE_FILTER")); | |||
auto run = [&](size_t N, size_t OC, size_t g, size_t IH, size_t IW, size_t FH, | |||
size_t SH, size_t nr_times) { | |||
bencher.set_dtype(0, dtype::Float32()) | |||
.set_dtype(1, dtype::Float32()) | |||
.set_dtype(2, dtype::Float32()); | |||
param::Convolution param; | |||
param.stride_h = param.stride_w = SH; | |||
param.pad_h = param.pad_w = FH / 2; | |||
param.sparse = param::Convolution::Sparse::GROUP; | |||
bencher.set_param(param); | |||
bencher.set_times(nr_times); | |||
TensorLayout src{{N, g, IH, IW}, dtype::Float32()}, | |||
filter{{g, 1, 1, FH, FH}, dtype::Float32()}; | |||
TensorLayout dst; | |||
{ | |||
auto&& opr = handle_cuda()->create_operator<Convolution>(); | |||
opr->param() = param; | |||
opr->deduce_layout(src, filter, dst); | |||
} | |||
auto time_ms_fp32 = bencher.execl({filter, dst, src}) / nr_times; | |||
float flo = 2.0 * N * g * dst[2] * dst[3] * FH * FH; | |||
printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(), | |||
filter.to_string().c_str(), dst.to_string().c_str()); | |||
printf("time_fp32=%.2fms, flops=%.3fTFLOPS\n", time_ms_fp32, | |||
(flo / (time_ms_fp32 * 1e9))); | |||
}; | |||
run(64, 384, 384, 32, 32, 3, 1, 10); | |||
run(64, 384, 384, 32, 32, 5, 1, 10); | |||
run(64, 384, 384, 32, 32, 7, 1, 10); | |||
run(64, 384, 384, 32, 32, 9, 1, 10); | |||
run(64, 384, 384, 32, 32, 11, 1, 10); | |||
run(64, 384, 384, 32, 32, 13, 1, 10); | |||
run(64, 384, 384, 32, 32, 15, 1, 10); | |||
run(64, 384, 384, 32, 32, 17, 1, 10); | |||
run(64, 384, 384, 32, 32, 19, 1, 10); | |||
run(64, 384, 384, 32, 32, 21, 1, 10); | |||
run(64, 384, 384, 32, 32, 23, 1, 10); | |||
run(64, 384, 384, 32, 32, 25, 1, 10); | |||
run(64, 384, 384, 32, 32, 27, 1, 10); | |||
run(64, 384, 384, 32, 32, 29, 1, 10); | |||
run(64, 384, 384, 32, 32, 31, 1, 10); | |||
} | |||
TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_DATA_DEPTHWISE_LARGE_FILTER_FP16) { | |||
CUBenchmarker<ConvolutionBackwardData> bencher{handle_cuda()}; | |||
bencher.set_display(false); | |||
bencher.set_before_exec_callback( | |||
AlgoChecker<ConvolutionBackwardData>("DEPTHWISE_LARGE_FILTER")); | |||
auto run = [&](size_t N, size_t OC, size_t g, size_t IH, size_t IW, size_t FH, | |||
size_t SH, size_t nr_times) { | |||
bencher.set_dtype(0, dtype::Float16()) | |||
.set_dtype(1, dtype::Float16()) | |||
.set_dtype(2, dtype::Float16()); | |||
param::Convolution param; | |||
param.stride_h = param.stride_w = SH; | |||
param.pad_h = param.pad_w = FH / 2; | |||
param.sparse = param::Convolution::Sparse::GROUP; | |||
bencher.set_param(param); | |||
bencher.set_times(nr_times); | |||
TensorLayout src{{N, g, IH, IW}, dtype::Float16()}, | |||
filter{{g, 1, 1, FH, FH}, dtype::Float16()}; | |||
TensorLayout dst; | |||
{ | |||
auto&& opr = handle_cuda()->create_operator<Convolution>(); | |||
opr->param() = param; | |||
opr->deduce_layout(src, filter, dst); | |||
} | |||
auto time_ms_fp16 = bencher.execl({filter, dst, src}) / nr_times; | |||
float flo = 2.0 * N * g * dst[2] * dst[3] * FH * FH; | |||
printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(), | |||
filter.to_string().c_str(), dst.to_string().c_str()); | |||
printf("time_fp16=%.2fms, flops=%.3fTFLOPS\n", time_ms_fp16, | |||
(flo / (time_ms_fp16 * 1e9))); | |||
}; | |||
run(64, 384, 384, 32, 32, 3, 1, 10); | |||
run(64, 384, 384, 32, 32, 5, 1, 10); | |||
run(64, 384, 384, 32, 32, 7, 1, 10); | |||
run(64, 384, 384, 32, 32, 9, 1, 10); | |||
run(64, 384, 384, 32, 32, 11, 1, 10); | |||
run(64, 384, 384, 32, 32, 13, 1, 10); | |||
run(64, 384, 384, 32, 32, 15, 1, 10); | |||
run(64, 384, 384, 32, 32, 17, 1, 10); | |||
run(64, 384, 384, 32, 32, 19, 1, 10); | |||
run(64, 384, 384, 32, 32, 21, 1, 10); | |||
run(64, 384, 384, 32, 32, 23, 1, 10); | |||
run(64, 384, 384, 32, 32, 25, 1, 10); | |||
run(64, 384, 384, 32, 32, 27, 1, 10); | |||
run(64, 384, 384, 32, 32, 29, 1, 10); | |||
run(64, 384, 384, 32, 32, 31, 1, 10); | |||
} | |||
TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_DATA_BF16) { | |||
CUBenchmarker<ConvolutionBackwardData> bench{handle_cuda()}; | |||
std::unique_ptr<OprProxy<ConvolutionBackwardData>> proxy{ | |||
@@ -1065,6 +1227,46 @@ TEST_F(CUDA, CONVOLUTION_BWD_FILTER_BENCHMARK) { | |||
run(32, 512, 1024, 14, 14, 1, 2, 0); | |||
run(32, 64, 64, 56, 56, 1, 1, 0); | |||
} | |||
TEST_F(CUDA, BENCHMARK_CONVOLUTION_BWD_FILTER_DEPTHWISE_LARGE_FILTER) { | |||
CUBenchmarker<ConvolutionBackwardFilter> bench{handle_cuda()}; | |||
std::unique_ptr<OprProxy<ConvolutionBackwardFilter>> proxy{ | |||
new OprProxy<ConvolutionBackwardFilter>{true}}; | |||
size_t RUNS = 10; | |||
bench.set_proxy(proxy).set_times(RUNS); | |||
bench.set_before_exec_callback(AlgoChecker<ConvolutionBackwardFilter>( | |||
"CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFTv7.6.3")); | |||
auto run = [&](size_t N, size_t OC, size_t g, size_t IH, size_t IW, size_t FH, | |||
size_t SH, size_t PH) { | |||
bench.set_dtype(0, dtype::Float32()) | |||
.set_dtype(1, dtype::Float32()) | |||
.set_dtype(2, dtype::Float32()); | |||
param::Convolution param; | |||
param.stride_h = param.stride_w = SH; | |||
param.pad_h = param.pad_w = FH / 2; | |||
param.sparse = param::Convolution::Sparse::GROUP; | |||
bench.set_param(param); | |||
bench.proxy()->target_execution_policy.algo.reset(); | |||
TensorLayout src{{N, g, IH, IW}, dtype::Float32()}, | |||
filter{{g, 1, 1, FH, FH}, dtype::Float32()}; | |||
TensorLayout dst; | |||
{ | |||
auto&& opr = handle_cuda()->create_operator<Convolution>(); | |||
opr->param() = param; | |||
opr->deduce_layout(src, filter, dst); | |||
} | |||
auto time_ms_fp32 = bench.execl({src, dst, filter}) / RUNS; | |||
float flo = 2.0 * N * g * dst[2] * dst[3] * FH * FH; | |||
printf("inp=%s, kern=%s, dst=%s ", src.to_string().c_str(), | |||
filter.to_string().c_str(), dst.to_string().c_str()); | |||
printf("time_fp32=%.2fms, flops=%.3fTFLOPS\n", time_ms_fp32, | |||
(flo / (time_ms_fp32 * 1e9))); | |||
}; | |||
run(64, 384, 384, 32, 32, 31, 1, 15); | |||
} | |||
#endif | |||
#undef CUDNN_VERSION_STRING | |||
@@ -213,7 +213,7 @@ std::vector<BenchArgs> get_feat_model_args() { | |||
return args; | |||
} | |||
#if CUDA_VERSION >= 10020 | |||
#if CUDA_VERSION >= 10010 | |||
std::vector<BenchArgs> get_f16_feat_model_args() { | |||
std::vector<BenchArgs> args; | |||
args.emplace_back(BenchArgs{128, 9216, 9216}); | |||
@@ -367,7 +367,7 @@ MEGDNN_FOREACH_CUTLASS_KERNEL(cb) | |||
#undef cb | |||
#undef MEGDNN_FOREACH_CUTLASS_KERNEL | |||
#if CUDA_VERSION >= 10020 | |||
#if CUDA_VERSION >= 10010 | |||
#define MEGDNN_FOREACH_CUTLASS_KERNEL(cb) \ | |||
cb(1, 256, 128, 32, 64, 64, 32, 8, 8, 4); \ | |||
cb(2, 128, 256, 32, 64, 64, 32, 8, 8, 4); \ | |||
@@ -403,7 +403,9 @@ MEGDNN_FOREACH_CUTLASS_KERNEL(cb) | |||
#undef cb | |||
#undef MEGDNN_FOREACH_CUTLASS_KERNEL | |||
#endif | |||
#if CUDA_VERSION >= 10020 | |||
#define MEGDNN_FOREACH_CUTLASS_KERNEL(cb) \ | |||
cb(1, 256, 128, 32, 64, 64, 32, 16, 8, 8); \ | |||
cb(2, 128, 256, 32, 64, 64, 32, 16, 8, 8); \ | |||
@@ -454,7 +456,7 @@ TEST_F(CUDA, BENCHMARK_CUTLASS_MATMUL_FEAT) { | |||
dtype::Float32(), "CUTLASS_FLOAT32_SIMT"); | |||
} | |||
#if CUDA_VERSION >= 10020 | |||
#if CUDA_VERSION >= 10010 | |||
TEST_F(CUDA, BENCHMARK_CUTLASS_F16_MATMUL_FEAT) { | |||
benchmark_matrix_mul( | |||
handle_cuda(), get_f16_feat_model_args(), dtype::Float16(), | |||
@@ -101,6 +101,36 @@ TEST_F(CUDA, PADDING_REFLECT2) { | |||
4, 1, 6, 3, 6, 1, 6, 3})}); | |||
} | |||
TEST_F(CUDA, PADDING_REFLECT2_QUANTIZED) { | |||
Checker<Padding> checker(handle_cuda(), false); | |||
param::Padding param; | |||
param.padding_mode = param::Padding::PaddingMode::REFLECT; | |||
param.front_offset_dim0 = 2; | |||
param.front_offset_dim1 = 1; | |||
param.front_offset_dim2 = 0; | |||
param.front_offset_dim3 = 0; | |||
param.front_offset_dim4 = 0; | |||
param.front_offset_dim5 = 0; | |||
param.front_offset_dim6 = 0; | |||
param.back_offset_dim0 = 0; | |||
param.back_offset_dim1 = 2; | |||
param.back_offset_dim2 = 0; | |||
param.back_offset_dim3 = 0; | |||
param.back_offset_dim4 = 0; | |||
param.back_offset_dim5 = 0; | |||
param.back_offset_dim6 = 0; | |||
checker.set_param(param).exect( | |||
Testcase{ | |||
TensorValue( | |||
{3, 3}, dtype::QuantizedS8(), {1, 2, 3, 4, 5, 6, 7, 8, 9}), | |||
{}}, | |||
Testcase{{}, TensorValue({5, 6}, dtype::QuantizedS8(), {8, 7, 8, 9, 8, 7, 5, | |||
4, 5, 6, 5, 4, 2, 1, | |||
2, 3, 2, 1, 5, 4, 5, | |||
6, 5, 4, 8, 7, 8, 9, | |||
8, 7})}); | |||
} | |||
TEST_F(CUDA, PADDING_REPLICATE) { | |||
Checker<Padding> checker(handle_cuda(), false); | |||
param::Padding param; | |||
@@ -83,6 +83,36 @@ TEST_F(NAIVE, PADDING_REFLECT) { | |||
{10}, dtype::Float32(), {3, 2, 1, 2, 3, 4, 5, 4, 3, 2})}); | |||
} | |||
TEST_F(NAIVE, PADDING_REFLECT2) { | |||
Checker<Padding> checker(handle(), false); | |||
param::Padding param; | |||
param.padding_mode = param::Padding::PaddingMode::REFLECT; | |||
param.front_offset_dim0 = 2; | |||
param.front_offset_dim1 = 1; | |||
param.front_offset_dim2 = 0; | |||
param.front_offset_dim3 = 0; | |||
param.front_offset_dim4 = 0; | |||
param.front_offset_dim5 = 0; | |||
param.front_offset_dim6 = 0; | |||
param.back_offset_dim0 = 0; | |||
param.back_offset_dim1 = 2; | |||
param.back_offset_dim2 = 0; | |||
param.back_offset_dim3 = 0; | |||
param.back_offset_dim4 = 0; | |||
param.back_offset_dim5 = 0; | |||
param.back_offset_dim6 = 0; | |||
checker.set_param(param).exect( | |||
Testcase{ | |||
TensorValue( | |||
{3, 3}, dtype::QuantizedS8(), {1, 2, 3, 4, 5, 6, 7, 8, 9}), | |||
{}}, | |||
Testcase{{}, TensorValue({5, 6}, dtype::QuantizedS8(), {8, 7, 8, 9, 8, 7, 5, | |||
4, 5, 6, 5, 4, 2, 1, | |||
2, 3, 2, 1, 5, 4, 5, | |||
6, 5, 4, 8, 7, 8, 9, | |||
8, 7})}); | |||
} | |||
TEST_F(NAIVE, PADDING_REPLICATE) { | |||
Checker<Padding> checker(handle(), false); | |||
param::Padding param; | |||
@@ -119,12 +119,16 @@ def unpack_getitem(inp, tuple_val, *, allow_newaxis=True): | |||
else 1 | |||
) | |||
else: | |||
if ndim_indexed > inp.ndim: | |||
raise IndexError( | |||
"too many indices for tensor: tensor is {}-dimensional, but {} were indexed".format( | |||
inp.ndim, len(tuple_val) | |||
try: | |||
if ndim_indexed > inp.ndim: | |||
raise IndexError( | |||
"too many indices for tensor: tensor is {}-dimensional, but {} were indexed".format( | |||
inp.ndim, len(tuple_val) | |||
) | |||
) | |||
) | |||
except ValueError: | |||
# ignore | |||
pass | |||
tuple_val = remove_ellipsis(inp, tuple_val) | |||
use_subtensor = True | |||
@@ -18,6 +18,7 @@ from ..functional import ( | |||
conv_transpose3d, | |||
deformable_conv2d, | |||
local_conv2d, | |||
pad, | |||
relu, | |||
) | |||
from ..tensor import Parameter | |||
@@ -126,7 +127,7 @@ class Conv1d(_ConvNd): | |||
kernel_size: size of weight on spatial dimensions. | |||
stride: stride of the 1D convolution operation. | |||
padding: size of the paddings added to the input on both sides of its | |||
spatial dimensions. Only zero-padding is supported. Default: 0 | |||
spatial dimensions. Default: 0 | |||
dilation: dilation of the 1D convolution operation. Default: 1 | |||
groups: number of groups to divide input and output channels into, | |||
so as to perform a "grouped convolution". When ``groups`` is not 1, | |||
@@ -139,6 +140,8 @@ class Conv1d(_ConvNd): | |||
placed on the precision of intermediate results. When set to "float32", | |||
"float32" would be used for accumulator and intermediate result, but only | |||
effective when input and output are of float16 dtype. | |||
padding_mode: "zeros", "reflect" or "replicate". Default: "zeros". | |||
Refer to :class:`~.module.padding.Pad` for more information. | |||
Note: | |||
* ``weight`` usually has shape ``(out_channels, in_channels, kernel_size)`` , | |||
@@ -177,6 +180,7 @@ class Conv1d(_ConvNd): | |||
bias: bool = True, | |||
conv_mode: str = "cross_correlation", | |||
compute_mode: str = "default", | |||
padding_mode: str = "zeros", | |||
**kwargs | |||
): | |||
kernel_size = kernel_size | |||
@@ -185,6 +189,7 @@ class Conv1d(_ConvNd): | |||
dilation = dilation | |||
self.conv_mode = conv_mode | |||
self.compute_mode = compute_mode | |||
self.padding_mode = padding_mode | |||
super().__init__( | |||
in_channels, | |||
out_channels, | |||
@@ -223,7 +228,27 @@ class Conv1d(_ConvNd): | |||
# Assume format is NCH(W=1) | |||
return (1, self.out_channels, 1) | |||
def get_pad_witdth(self): | |||
return ((0, 0), (0, 0), (self.padding, self.padding)) | |||
def calc_conv(self, inp, weight, bias): | |||
assert self.padding_mode in [ | |||
"zeros", | |||
"reflect", | |||
"replicate", | |||
] | |||
if self.padding_mode != "zeros": | |||
return conv1d( | |||
pad(inp, self.get_pad_witdth(), self.padding_mode), | |||
weight, | |||
bias, | |||
self.stride, | |||
0, | |||
self.dilation, | |||
self.groups, | |||
self.conv_mode, | |||
self.compute_mode, | |||
) | |||
return conv1d( | |||
inp, | |||
weight, | |||
@@ -287,7 +312,7 @@ class Conv2d(_ConvNd): | |||
``(kernel_size, kernel_size)``. | |||
stride: stride of the 2D convolution operation. Default: 1 | |||
padding: size of the paddings added to the input on both sides of its | |||
spatial dimensions. Only zero-padding is supported. Default: 0 | |||
spatial dimensions. Default: 0 | |||
dilation: dilation of the 2D convolution operation. Default: 1 | |||
groups: number of groups into which the input and output channels are divided, | |||
so as to perform a ``grouped convolution``. When ``groups`` is not 1, | |||
@@ -300,6 +325,8 @@ class Conv2d(_ConvNd): | |||
placed on the precision of intermediate results. When set to "float32", | |||
"float32" would be used for accumulator and intermediate result, but only | |||
effective when input and output are of float16 dtype. | |||
padding_mode: "zeros", "reflect" or "replicate". Default: "zeros". | |||
Refer to :class:`~.module.padding.Pad` for more information. | |||
Note: | |||
* ``weight`` usually has shape ``(out_channels, in_channels, height, width)`` , | |||
@@ -338,6 +365,7 @@ class Conv2d(_ConvNd): | |||
bias: bool = True, | |||
conv_mode: str = "cross_correlation", | |||
compute_mode: str = "default", | |||
padding_mode: str = "zeros", | |||
**kwargs | |||
): | |||
kernel_size = _pair_nonzero(kernel_size) | |||
@@ -346,6 +374,7 @@ class Conv2d(_ConvNd): | |||
dilation = _pair_nonzero(dilation) | |||
self.conv_mode = conv_mode | |||
self.compute_mode = compute_mode | |||
self.padding_mode = padding_mode | |||
super().__init__( | |||
in_channels, | |||
out_channels, | |||
@@ -384,7 +413,32 @@ class Conv2d(_ConvNd): | |||
# Assume format is NCHW | |||
return (1, self.out_channels, 1, 1) | |||
def get_pad_witdth(self): | |||
return ( | |||
(0, 0), | |||
(0, 0), | |||
(self.padding[0], self.padding[0]), | |||
(self.padding[1], self.padding[1]), | |||
) | |||
def calc_conv(self, inp, weight, bias): | |||
assert self.padding_mode in [ | |||
"zeros", | |||
"reflect", | |||
"replicate", | |||
] | |||
if self.padding_mode != "zeros": | |||
return conv2d( | |||
pad(inp, self.get_pad_witdth(), self.padding_mode), | |||
weight, | |||
bias, | |||
self.stride, | |||
0, | |||
self.dilation, | |||
self.groups, | |||
self.conv_mode, | |||
self.compute_mode, | |||
) | |||
return conv2d( | |||
inp, | |||
weight, | |||
@@ -30,6 +30,7 @@ class _ConvBnActivation2d(Module): | |||
momentum=0.9, | |||
affine=True, | |||
track_running_stats=True, | |||
padding_mode: str = "zeros", | |||
**kwargs | |||
): | |||
super().__init__(**kwargs) | |||
@@ -44,6 +45,7 @@ class _ConvBnActivation2d(Module): | |||
bias, | |||
conv_mode, | |||
compute_mode, | |||
padding_mode, | |||
**kwargs, | |||
) | |||
self.bn = BatchNorm2d(out_channels, eps, momentum, affine, track_running_stats) | |||
@@ -138,11 +138,7 @@ class Module(metaclass=ABCMeta): | |||
return HookHandler(self._forward_hooks, hook) | |||
def __call__(self, *inputs, **kwargs): | |||
AutoNaming.push_scope( | |||
self.name | |||
if self.name is not None | |||
else (self._short_name if hasattr(self, "_short_name") else self._name) | |||
) | |||
AutoNaming.push_scope(self.name if self.name is not None else self._short_name) | |||
for hook in self._forward_pre_hooks.values(): | |||
modified_inputs = hook(self, inputs) | |||
if modified_inputs is not None: | |||
@@ -685,6 +681,12 @@ class Module(metaclass=ABCMeta): | |||
set_name(self, prefix, k, v) | |||
super().__setattr__(name, value) | |||
def __setstate__(self, state): | |||
if "_short_name" not in state: | |||
state["_short_name"] = state["_name"] | |||
state["_name"] = None | |||
self.__dict__.update(state) | |||
def __delattr__(self, name: str): | |||
if name in self.__dict__ and _is_module(self.__dict__[name]): | |||
modules = self.__dict__.get("_modules") | |||
@@ -38,6 +38,7 @@ class Conv2d(Float.Conv2d, QATModule): | |||
float_module.bias is not None, | |||
float_module.conv_mode, | |||
float_module.compute_mode, | |||
float_module.padding_mode, | |||
name=float_module.name, | |||
) | |||
qat_module.weight = float_module.weight | |||
@@ -147,6 +147,7 @@ class _ConvBnActivation2d(Float._ConvBnActivation2d, QATModule): | |||
float_module.conv.bias is not None, | |||
float_module.conv.conv_mode, | |||
float_module.conv.compute_mode, | |||
padding_mode=float_module.conv.padding_mode, | |||
name=float_module.name, | |||
) | |||
qat_module.conv.weight = float_module.conv.weight | |||
@@ -11,7 +11,7 @@ import numpy as np | |||
from ... import module as Float | |||
from ...core.tensor import dtype | |||
from ...functional.nn import conv_bias_activation | |||
from ...functional.nn import conv_bias_activation, pad | |||
from ...functional.quantized import conv_transpose2d | |||
from ...tensor import Parameter | |||
from ..qat import conv as QAT | |||
@@ -38,6 +38,7 @@ class Conv2d(Float.Conv2d, QuantizedModule): | |||
conv_mode: str = "cross_correlation", | |||
compute_mode: str = "default", | |||
dtype=None, | |||
padding_mode: str = "zeros", | |||
**kwargs | |||
): | |||
super().__init__( | |||
@@ -51,13 +52,33 @@ class Conv2d(Float.Conv2d, QuantizedModule): | |||
True, | |||
conv_mode, | |||
compute_mode, | |||
padding_mode, | |||
) | |||
self.output_dtype = dtype | |||
def calc_conv_quantized(self, inp, nonlinear_mode="identity"): | |||
assert self.padding_mode in [ | |||
"zeros", | |||
"reflect", | |||
"replicate", | |||
] | |||
inp_scale = dtype.get_scale(inp.dtype) | |||
w_scale = dtype.get_scale(self.weight.dtype) | |||
bias_scale = inp_scale * w_scale | |||
if self.padding_mode != "zeros": | |||
return conv_bias_activation( | |||
pad(inp, self.get_pad_witdth(), self.padding_mode), | |||
self.weight, | |||
self.bias.astype(dtype.qint32(bias_scale)), | |||
self.output_dtype, | |||
self.stride, | |||
0, | |||
self.dilation, | |||
self.groups, | |||
conv_mode=self.conv_mode, | |||
compute_mode=self.compute_mode, | |||
nonlinear_mode=nonlinear_mode, | |||
) | |||
return conv_bias_activation( | |||
inp, | |||
self.weight, | |||
@@ -88,6 +109,7 @@ class Conv2d(Float.Conv2d, QuantizedModule): | |||
qat_module.dilation, | |||
qat_module.groups, | |||
dtype=output_dtype, | |||
padding_mode=qat_module.padding_mode, | |||
name=qat_module.name, | |||
) | |||
weight = qat_module.weight.astype(qat_module.get_weight_dtype()) | |||
@@ -31,6 +31,7 @@ class _ConvBnActivation2d(Conv2d): | |||
qat_module.conv.groups, | |||
dtype=output_dtype, | |||
name=qat_module.name, | |||
padding_mode=qat_module.conv.padding_mode, | |||
) | |||
w_fold, b_fold = qat_module.fold_weight_bias( | |||
qat_module.bn.running_mean, qat_module.bn.running_var | |||
@@ -126,6 +126,9 @@ def convbn2d_module_loader(expr): | |||
module = expr.inputs[0].owner | |||
if not hasattr(module.bn, "param_dim"): | |||
module.bn.param_dim = "dim_1c11" | |||
module = expr.inputs[0].owner | |||
if not hasattr(module.conv, "padding_mode"): | |||
module.conv.padding_mode = "zeros" | |||
@register_opdef_loader(BatchNorm) | |||
@@ -162,3 +165,36 @@ def tensor_gen_func_loader(expr): | |||
else: | |||
device = None | |||
expr.set_args_kwargs(shape, dtype=dtype, device=device) | |||
@register_functional_loader(("megengine.functional.nn", "pad")) | |||
def pad_func_loader(expr): | |||
if "pad_witdth" in expr.kwargs: | |||
kwargs = expr.kwargs | |||
kwargs["pad_width"] = kwargs.pop("pad_witdth") | |||
expr.set_args_kwargs(*expr.args, **kwargs) | |||
@register_module_loader( | |||
("megengine.module.conv", "Conv1d"), | |||
("megengine.module.conv", "Conv2d"), | |||
("megengine.module.conv", "ConvRelu2d"), | |||
("megengine.module.qat.conv", "Conv2d"), | |||
("megengine.module.qat.conv", "ConvRelu2d"), | |||
("megengine.module.quantized.conv", "Conv2d"), | |||
("megengine.module.quantized.conv", "ConvRelu2d"), | |||
) | |||
def conv2d_module_loader(expr): | |||
module = expr.inputs[0].owner | |||
if not hasattr(module, "padding_mode"): | |||
module.padding_mode = "zeros" | |||
@register_module_loader( | |||
("megengine.module.quantized.conv_bn", "ConvBn2d"), | |||
("megengine.module.quantized.conv_bn", "ConvBnRelu2d"), | |||
) | |||
def quantized_convbn2d_module_loader(expr): | |||
module = expr.inputs[0].owner | |||
if not hasattr(module, "padding_mode"): | |||
module.padding_mode = "zeros" |
@@ -50,7 +50,7 @@ class _ModuleState: | |||
if self.obj is None: | |||
typem = getattr(import_module(self.module[0]), self.module[1]) | |||
m_obj = typem.__new__(typem) | |||
m_obj.__dict__.update(self.state) | |||
m_obj.__setstate__(self.state) | |||
self.obj = m_obj | |||
return self.obj | |||
@@ -1681,11 +1681,13 @@ class TracedModuleBuilder(NodeMixin): | |||
if isinstance(wrapped, TracedModuleBuilder): | |||
if not isinstance(mod_attr, (List, Dict, QATModule)): | |||
assert mod_attr is wrapped._mod | |||
else: | |||
assert ( | |||
mod_attr is wrapped._mod | |||
), "TracedModule do not support modify module attributes, please check your code." | |||
if isinstance(wrapped, RawTensor): | |||
assert ( | |||
mod_attr is wrapped | |||
), "TracedModule do not support modify attributes, please check your code." | |||
), "TracedModule do not support modify tensor attributes, please check your code." | |||
if isinstance(wrapped, (NodeMixin, RawTensor)): | |||
NodeMixin.wrap( | |||
@@ -2296,7 +2298,7 @@ class TracedModule(Module): | |||
for k, v in state.items(): | |||
if isinstance(v, _ModuleState): | |||
state[k] = v.to_module() | |||
self.__dict__.update(state) | |||
super().__setstate__(state) | |||
self._update_ref() | |||
for _, graph in self.argdef_graph_map.items(): | |||
@@ -272,16 +272,12 @@ PyObject* TensorWrapper::device() { | |||
PyObject* TensorWrapper::numpy() { | |||
auto hv = m_tensor->numpy(); | |||
// if (!hv) { | |||
// PyErr_SetString(PyExc_ValueError, "tensor invalid"); | |||
// return nullptr; | |||
// } | |||
auto arr = py::reinterpret_steal<py::array>( | |||
npy::ndarray_from_tensor(hv->as_nd(true), npy::ShareType::TRY_SHARE)); | |||
if (!arr) { | |||
if (!hv) { | |||
PyErr_SetString(PyExc_ValueError, "tensor invalid"); | |||
return nullptr; | |||
} | |||
auto arr = py::reinterpret_steal<py::array>( | |||
npy::ndarray_from_tensor(hv->as_nd(true), npy::ShareType::TRY_SHARE)); | |||
if (hv->shape().is_scalar()) { | |||
mgb_assert(PyArray_Check(arr.ptr())); | |||
return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(arr.ptr())); | |||
@@ -7,6 +7,8 @@ | |||
# software distributed under the License is distributed on an | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
import collections | |||
import platform | |||
from tempfile import NamedTemporaryFile | |||
import numpy as np | |||
import pytest | |||
@@ -16,6 +18,8 @@ import megengine | |||
import megengine.core.tensor.megbrain_graph as G | |||
import megengine.functional as F | |||
import megengine.jit as jit | |||
import megengine.random as rand | |||
import megengine.utils.comp_graph_tools as cgtools | |||
from megengine.core._imperative_rt.core2 import apply | |||
from megengine.core._trace_option import use_symbolic_shape | |||
from megengine.core.ops import builtin | |||
@@ -724,3 +728,26 @@ def test_nd_int_indexing(symbolic): | |||
np.testing.assert_equal(out.numpy(), npy_out) | |||
run_test([inp, idx], lambda inp, idx: inp[idx]) | |||
@pytest.mark.skipif( | |||
platform.system() == "Windows", reason="windows temp file issue, fixme later" | |||
) | |||
def test_subtensor_when_shape_invalid(): | |||
@jit.trace(symbolic=True, capture_as_const=True) | |||
def fun(inp): | |||
shape = inp.shape | |||
H = shape[-1] | |||
NH = H * 8 + 4 | |||
arr = F.arange(4, NH, 8) | |||
arr_shape = arr.shape | |||
return arr_shape[0] | |||
inp = rand.uniform(size=[1, 3, 224, 224]) | |||
fun(inp) | |||
with NamedTemporaryFile() as f: | |||
fun.dump(f.name, arg_names=["data"], optimize_for_inference=True) | |||
inp = rand.uniform(size=[1, 3, 512, 512]) | |||
net = cgtools.GraphInference(f.name) | |||
net.run(inp_dict={"data": inp}) |
@@ -87,3 +87,17 @@ def test_compatibility(): | |||
test_old_tensor("tensor_v1_1.mge") | |||
test_old_tensor("tensor_v1_2.mge") | |||
t = mge.tensor([1]) | |||
getattr(t, "qparams") | |||
new_args = t.__getnewargs__() | |||
assert ( | |||
len(new_args) == 3 | |||
and isinstance(new_args[0], np.ndarray) | |||
and new_args[1] == np.int32 | |||
and isinstance(new_args[2], str) | |||
), "Modify Tensor __getnewargs__ may break pickle serialization compatible" | |||
state = t.__getstate__() | |||
assert set(state.keys()) == set( | |||
["qparams"] | |||
), "Modify Tensor __getstate__ may break pickle serialization compatible" |
@@ -681,3 +681,27 @@ def test_repr_module_reset_attr(): | |||
m1 = ResetAttrModule(False) | |||
output = [m0.__repr__(), m1.__repr__()] | |||
assert output == ground_truth | |||
def test_module_compatible(): | |||
class Empty(Module): | |||
def forward(self): | |||
pass | |||
empty_module = Empty() | |||
old_attributes = set( | |||
[ | |||
"_modules", | |||
"name", | |||
"training", | |||
"quantize_disabled", | |||
"_forward_pre_hooks", | |||
"_forward_hooks", | |||
"_name", | |||
"_short_name", | |||
] | |||
) | |||
current_attributes = set(empty_module.__dict__.keys()) | |||
assert ( | |||
old_attributes == current_attributes | |||
), "Add or delete attributes in Module class may break compatibility of pickle serialization" |
@@ -60,7 +60,18 @@ def test_qat_convbn2d(): | |||
) | |||
def test_qat_conv(): | |||
@pytest.mark.parametrize( | |||
"padding, padding_mode", | |||
[ | |||
(0, "zeros"), | |||
((1, 2), "zeros"), | |||
(3, "reflect"), | |||
((1, 2), "reflect"), | |||
(4, "replicate"), | |||
((1, 2), "replicate"), | |||
], | |||
) | |||
def test_qat_conv(padding, padding_mode): | |||
in_channels = 32 | |||
out_channels = 64 | |||
@@ -72,7 +83,13 @@ def test_qat_conv(): | |||
self.quant = QuantStub() | |||
self.dequant = DequantStub() | |||
self.conv = Conv2d( | |||
in_channels, out_channels, kernel_size, groups=groups, bias=bias | |||
in_channels, | |||
out_channels, | |||
kernel_size, | |||
groups=groups, | |||
bias=bias, | |||
padding=padding, | |||
padding_mode=padding_mode, | |||
) | |||
self.conv_relu = ConvRelu2d( | |||
out_channels, in_channels, kernel_size, groups=groups, bias=bias | |||
@@ -236,11 +236,16 @@ def test_linear(): | |||
@pytest.mark.parametrize("module", ["Conv2d", "ConvBn2d", "ConvBnRelu2d"]) | |||
def test_conv(module): | |||
normal_net = getattr(Float, module)(3, 3, 3, 1, 1, 1, bias=True) | |||
@pytest.mark.parametrize("padding_mode", ["zeros", "reflect", "replicate"]) | |||
def test_conv(module, padding_mode): | |||
normal_net = getattr(Float, module)( | |||
3, 3, 3, 1, 1, 1, bias=True, padding_mode=padding_mode | |||
) | |||
normal_net.eval() | |||
qat_net = getattr(QAT, module)(3, 3, 3, 1, 1, 1, bias=True) | |||
qat_net = getattr(QAT, module)( | |||
3, 3, 3, 1, 1, 1, bias=True, padding_mode=padding_mode | |||
) | |||
qat_net.eval() | |||
disable_observer(qat_net) | |||
@@ -51,6 +51,7 @@ bool is_scalar_shape(ValueRef shape) { | |||
if (shape.is<ScalarValue>()) { | |||
return false; | |||
} | |||
// may have performance issue | |||
auto shape_of_shape = shape.shape(); | |||
if (!shape_of_shape) { | |||
// assume not scalar | |||
@@ -211,14 +212,21 @@ std::vector<ValueRef> subtensor_rule( | |||
const Subtensor& subtensor, Span<ValueRef> inputs) { | |||
mgb_assert(inputs.size() >= 1); | |||
auto input = inputs[0]; | |||
size_t ndim = input.is<ScalarValue>() ? 0 : input.shape()->ndim; | |||
for (auto&& [axis, begin, end, step, idx] : subtensor.items) { | |||
if (idx) { | |||
ndim--; | |||
bool is_scalar; | |||
mgb_assert(!input.is<ScalarValue>(), "subtensor shouldn't have scalar input"); | |||
if (auto shape = input.shape()) { | |||
size_t ndim = input.shape()->ndim; | |||
for (auto&& [axis, begin, end, step, idx] : subtensor.items) { | |||
if (idx) { | |||
ndim--; | |||
} | |||
} | |||
is_scalar = ndim == 0; | |||
} else { | |||
is_scalar = false; | |||
} | |||
auto output = imperative::apply(subtensor, unwrap_inputs(inputs))[0]; | |||
if (!ndim) { | |||
if (is_scalar) { | |||
return {ScalarValue::make(output)}; | |||
} else { | |||
return {output}; | |||
@@ -261,8 +269,7 @@ std::vector<ValueRef> fastpath_copy_rule( | |||
std::vector<ValueRef> reshape_rule(const Reshape& reshape, Span<ValueRef> inputs) { | |||
mgb_assert(inputs.size() == 2); | |||
bool is_scalar = | |||
(!inputs[1].is<ScalarValue>()) && *inputs[1].shape() == ValueShape{0}; | |||
bool is_scalar = is_scalar_shape(inputs[1]); | |||
auto unwrapped_input = inputs[0].is<ScalarValue>() | |||
? inputs[0].cast<ScalarValue>().value() | |||
: inputs[0]; | |||
@@ -15,7 +15,7 @@ | |||
#define MGE_MAJOR 1 | |||
#define MGE_MINOR 8 | |||
#define MGE_PATCH 0 | |||
#define MGE_PATCH 2 | |||
// for rc version, could be like "rc1", "rc2", etc | |||
#define MGE_EXTRA_NAME "" | |||
@@ -57,6 +57,7 @@ | |||
#cmakedefine01 MEGDNN_64_BIT | |||
#cmakedefine01 MEGDNN_THREADS_512 | |||
#cmakedefine01 MEGDNN_ENABLE_MULTI_THREADS | |||
#cmakedefine01 MEGDNN_WITH_BENCHMARK | |||
// whether atlas is available | |||
#ifndef MGB_ATLAS | |||
@@ -1 +1 @@ | |||
Subproject commit 31798848e40c2752d4b3db193491a63b77455029 | |||
Subproject commit 5a639171ed8489d877a56bfd28cfd9e6df8c5403 |