from typing import Tuple, Union import numpy as np from ... import module as Float from ...core.tensor import dtype from ...functional import expand_dims, squeeze from ...functional.quantized import batch_conv_bias_activation from ...tensor import Parameter from ..qat import batch_matmul_activation as QAT from .module import QuantizedModule class BatchMatMulActivation(Float.BatchMatMulActivation, QuantizedModule): r"""Quantized version of :class:`~.qat.BatchMatMulActivation`.""" def __init__( self, batch: int, in_features: int, out_features: int, bias: bool = True, nonlinear_mode="identity", dtype=None, **kwargs ): super().__init__(batch, in_features, out_features, bias, **kwargs) self.output_dtype = dtype def calc_bmm_quantized(self, inp): inp_scale = dtype.get_scale(inp.dtype) w_scale = dtype.get_scale(self.weight.dtype) bias_scale = inp_scale * w_scale inp = expand_dims(inp, [-1]) res = batch_conv_bias_activation( inp, self.weight, self.bias.astype(dtype.qint32(bias_scale)), dtype=self.output_dtype, stride=1, padding=0, dilation=1, groups=1, nonlinear_mode=self.nonlinear_mode, ) return squeeze(res, -1) @classmethod def from_qat_module(cls, qat_module: QAT.BatchMatMulActivation): output_dtype = qat_module.get_activation_dtype() qbmm = cls( qat_module.batch, qat_module.in_features, qat_module.out_features, qat_module.bias is not None, dtype=output_dtype, name=qat_module.name, ) weight = qat_module.weight.astype(qat_module.get_weight_dtype()) weight = expand_dims(weight, [-1, -2]) qbmm.weight = Parameter(weight.numpy(), name=qat_module.weight.name) if qat_module.bias is not None: bias = qat_module.bias.reshape((1, qbmm.out_features, 1, 1)) qbmm.bias = Parameter(bias.numpy(), name=qat_module.bias.name) else: qbmm.bias = Parameter( np.zeros((1, qbmm.out_features, 1, 1), dtype=np.float32) ) return qbmm def forward(self, inp): return self.calc_bmm_quantized(inp)