# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import os import numpy as np import megengine as mge from megengine import tensor from megengine.module import Module from megengine.module.external import CambriconSubgraph class MyModule(Module): def __init__(self, data): super().__init__() self.cambricon = CambriconSubgraph(data, "subnet0", True) def forward(self, inputs): out = self.cambricon(inputs) return out def test_cambricon_module(): model = "CambriconRuntimeOprTest.MutableBatchSize.mlu" model = os.path.join(os.path.dirname(__file__), model) with open(model, "rb") as f: data = f.read() m = MyModule(data) inputs = [] inputs.append(tensor(dtype=np.float16, device="cambricon0")) inputs[0].set_value(np.random.normal(size=(1, 64, 32, 32)).astype(np.float16)) def inference(inps): pred = m(inps) return pred pred = inference(inputs)