# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np def assertTensorClose(v0, v1, *, max_err=1e-6, name=None): """ max_err: relative error """ __tracebackhide__ = True # pylint: disable=unused-variable assert ( v0.dtype == v1.dtype ), "Two Tensor must have same dtype, but the inputs are {} and {}".format( v0.dtype, v1.dtype ) v0 = np.ascontiguousarray(v0, dtype=np.float32) v1 = np.ascontiguousarray(v1, dtype=np.float32) assert np.isfinite(v0.sum()) and np.isfinite(v1.sum()), (v0, v1) assert v0.shape == v1.shape, "Two tensor must have same shape({} v.s. {})".format( v0.shape, v1.shape ) vdiv = np.max([np.abs(v0), np.abs(v1), np.ones_like(v0)], axis=0) err = np.abs(v0 - v1) / vdiv check = err > max_err if check.sum(): idx = tuple(i[0] for i in np.nonzero(check)) if name is None: name = "tensor" else: name = "tensor {}".format(name) raise AssertionError( "{} not equal: " "shape={} nonequal_idx={} v0={} v1={} err={}".format( name, v0.shape, idx, v0[idx], v1[idx], err[idx] ) )