# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest from megengine.core import tensor from megengine.module import Linear, Module from megengine.optimizer import SGD class Blur(Module): def __init__(self, dim1=16, dim2=128, dim3=1): super().__init__() self.fc1 = Linear(dim1, dim2) self.fc2 = Linear(dim2, dim3) def forward(self, x): x = self.fc1(x) x = self.fc2(x) return x.mean(axis=1, keepdims=True) @pytest.mark.regression def test_blur(): net = Blur() data = tensor(np.random.random((32, 16)).astype("float32")) opt = SGD(net.parameters(requires_grad=True), lr=0.1) opt.zero_grad() loss = net(data) opt.backward(loss.sum())