/** * \file src/opr/test/algo_chooser.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "megbrain/comp_node_env.h" #include "megbrain/opr/blas.h" #include "megbrain/opr/dnn/convolution.h" #include "megbrain/test/autocheck.h" #include "megbrain/test/helper.h" #include "megbrain/test/megdnn_helper.h" #include "megbrain/serialization/serializer.h" #include "megbrain/opr/basic_arith.h" #include "megbrain/gopt/inference.h" #include "megbrain/opr/tensor_manip.h" #include "megdnn/oprs/base.h" #include "megdnn/dtype.h" #include #include #include using namespace mgb; namespace { #if MGB_CUDA #if MGB_ENABLE_FASTRUN template struct GraphMaker; template struct GraphMaker { SymbolVar operator()(const std::array& inputs, typename MgbOpr::Param& param, typename MgbOpr::ExecutionPolicy& policy) { return MgbOpr::make(inputs[0], inputs[1], param, policy); } }; template <> struct GraphMaker { SymbolVar operator()( const std::array& inputs, opr::ConvolutionBackwardData::Param& param, opr::ConvolutionBackwardData::ExecutionPolicy& policy) { return opr::ConvolutionBackwardData::make_deconv(inputs[0], inputs[1], param, policy); } }; template <> struct GraphMaker { SymbolVar operator()( const std::array& inputs, opr::Convolution3DBackwardData::Param& param, opr::Convolution3DBackwardData::ExecutionPolicy& policy) { return opr::Convolution3DBackwardData::make_deconv(inputs[0], inputs[1], param, policy); } }; template struct GraphMaker { SymbolVar operator()(const std::array& inputs, typename MgbOpr::Param& param, typename MgbOpr::ExecutionPolicy& policy) { return MgbOpr::make(inputs[0], inputs[1], inputs[2], param, policy, {}); } }; template struct GraphMaker { SymbolVar operator()(const std::array& inputs, typename MgbOpr::Param& param, typename MgbOpr::ExecutionPolicy& policy) { return MgbOpr::make(inputs[0], inputs[1], inputs[2], inputs[3], param, policy, {}); } }; template struct GraphMaker { SymbolVar operator()(const std::array& inputs, typename MgbOpr::Param& param, typename MgbOpr::ExecutionPolicy& policy) { return MgbOpr::make(inputs[0], inputs[1], inputs[2], inputs[3], inputs[4], param, policy, {}); } }; template void test_fastrun_opr(std::array inps0, std::array inps1, size_t expect_nr_cache_set_inp0 = 0, size_t expect_nr_cache_set_inp1 = 0, typename MgbOpr::Param param = {}) { using Policy = opr::Convolution::ExecutionPolicy; using S = Policy::Strategy; using InputGenerator = std::function; using ShapeInpArray = std::array; using CacheMem = std::pair; auto on_get = [](const std::string&, const void*, size_t, const void*, size_t) {}; std::vector> cache_set_history; auto on_set = [&cache_set_history](const std::string&, const void* key, size_t key_size, const void* val, size_t val_size) { cache_set_history.emplace_back(std::make_pair(key, key_size), std::make_pair(val, val_size)); }; PersistentCacheHook cache_hook{on_get, on_set}; CompNode comp_node = CompNode::load("xpu0"); GraphMaker graph_maker; auto run = [¶m, &comp_node, &graph_maker]( const std::shared_ptr& graph, const ShapeInpArray& shapes) { std::array inputs_generator; std::array, arith> inputs; for (size_t i = 0; i < arith; ++i) { inputs[i] = std::make_shared(comp_node, dtype()); } HostTensorGenerator gen_host; for (size_t i = 0; i < arith; ++i) { inputs[i]->resize(shapes[i]); *inputs[i] = *gen_host(inputs[i]->shape(), comp_node); mgb_assert(inputs[i]->shape().eq_shape(shapes[i])); } std::array sym_in; for (size_t i = 0; i < arith; ++i) { // to trigger graph trans sym_in[i] = opr::Host2DeviceCopy::make(*graph, inputs[i], ssprintf("inp%zu", i)); } Policy policy; policy.strategy = S::PROFILE; auto out = graph_maker(sym_in, param, policy); std::unique_ptr func = graph->compile({{out, {}}}); func->execute(); }; std::shared_ptr fastrun_ignore_batchsize_graph = ComputingGraph::make(); fastrun_ignore_batchsize_graph->options() .fast_run_config.shared_batch_size = 20; run(fastrun_ignore_batchsize_graph, inps0); size_t nr_set_inp0 = cache_set_history.size(); if (expect_nr_cache_set_inp0) { ASSERT_EQ(cache_set_history.size(), expect_nr_cache_set_inp0); } run(fastrun_ignore_batchsize_graph, inps1); size_t nr_set_total = expect_nr_cache_set_inp1 + nr_set_inp0; ASSERT_EQ(cache_set_history.size(), nr_set_total); } TEST(TestOprDNN, FastrunIgnoreBatchSizeConvolution) { REQUIRE_GPU(1); test_fastrun_opr( {TensorShape{12, 3, 36, 36}, TensorShape{4, 3, 3, 3}}, {TensorShape{1, 3, 36, 36}, TensorShape{4, 3, 3, 3}}); test_fastrun_opr( {TensorShape{12, 4, 23, 29}, TensorShape{4, 5, 3, 2}}, {TensorShape{2, 4, 23, 29}, TensorShape{4, 5, 3, 2}}); test_fastrun_opr( {TensorShape{12, 4, 23, 29}, TensorShape{12, 5, 21, 28}, TensorShape{5, 4, 3, 2}}, {TensorShape{2, 4, 23, 29}, TensorShape{2, 5, 21, 28}, TensorShape{5, 4, 3, 2}}); } TEST(TestOprDNN, FastrunIgnoreBatchSizeConvBias) { REQUIRE_GPU(1); test_fastrun_opr( {TensorShape{20, 16, 50, 50}, TensorShape{24, 16, 3, 3}, TensorShape{1, 24, 1, 1}}, {TensorShape{1, 16, 50, 50}, TensorShape{24, 16, 3, 3}, TensorShape{1, 24, 1, 1}}); } TEST(TestOprDNN, FastrunIgnoreBatchSizeConvolution3D) { REQUIRE_GPU(1); test_fastrun_opr( {TensorShape{8, 4, 12, 13, 14}, TensorShape{4, 4, 3, 3, 3}}, {TensorShape{3, 4, 12, 13, 14}, TensorShape{4, 4, 3, 3, 3}}); test_fastrun_opr( {TensorShape{14, 5, 12, 12, 16}, TensorShape{5, 5, 3, 3, 3}}, {TensorShape{4, 5, 12, 12, 16}, TensorShape{5, 5, 3, 3, 3}}); test_fastrun_opr( {TensorShape{64, 16, 18, 18, 18}, TensorShape{64, 16, 18, 18, 18}, TensorShape{16, 16, 1, 1, 1}}, {TensorShape{4, 16, 18, 18, 18}, TensorShape{4, 16, 18, 18, 18}, TensorShape{16, 16, 1, 1, 1}}); } TEST(TestOprDNN, FastrunIgnoreBatchSizeLocalShare) { REQUIRE_GPU(1); opr::LocalShare::Param local_share_param; local_share_param.mode = opr::LocalShare::Param::Mode::CROSS_CORRELATION; local_share_param.pad_h = local_share_param.pad_w = 1; local_share_param.stride_h = local_share_param.stride_w = 1; local_share_param.spatial_groups_h = local_share_param.spatial_groups_w = 2; test_fastrun_opr( {TensorShape{32, 2, 23, 23}, TensorShape{2, 2, 2, 2, 2, 7}}, {TensorShape{3, 2, 23, 23}, TensorShape{2, 2, 2, 2, 2, 7}}, 0, 0, local_share_param); test_fastrun_opr( {TensorShape{3, 3, 128, 1, 1, 128}, TensorShape{32, 128, 24, 24}, TensorShape{32, 128, 24, 24}}, {TensorShape{3, 3, 128, 1, 1, 128}, TensorShape{2, 128, 24, 24}, TensorShape{2, 128, 24, 24}}); test_fastrun_opr( {TensorShape{12, 3, 36, 36}, TensorShape{12, 4, 35, 35}, TensorShape{3, 3, 3, 3, 3, 4}}, {TensorShape{4, 3, 36, 36}, TensorShape{4, 4, 35, 35}, TensorShape{3, 3, 3, 3, 3, 4}}); } TEST(TestOprDNN, FastrunIgnoreBatchSizeDeformableConv) { REQUIRE_GPU(1); test_fastrun_opr( {TensorShape{12, 6, 20, 20}, TensorShape{6, 6, 3, 3}, TensorShape{12, 18, 18, 18}, TensorShape{12, 9, 18, 18}}, {TensorShape{4, 6, 20, 20}, TensorShape{6, 6, 3, 3}, TensorShape{4, 18, 18, 18}, TensorShape{4, 9, 18, 18}}); test_fastrun_opr( {TensorShape{12, 6, 20, 20}, TensorShape{6, 6, 3, 3}, TensorShape{12, 18, 18, 18}, TensorShape{12, 9, 18, 18}, TensorShape{12, 6, 18, 18}}, {TensorShape{4, 6, 20, 20}, TensorShape{6, 6, 3, 3}, TensorShape{4, 18, 18, 18}, TensorShape{4, 9, 18, 18}, TensorShape{4, 6, 18, 18}}); test_fastrun_opr( {TensorShape{12, 6, 20, 20}, TensorShape{6, 6, 3, 3}, TensorShape{12, 18, 18, 18}, TensorShape{12, 9, 18, 18}, TensorShape{12, 6, 18, 18}}, {TensorShape{4, 6, 20, 20}, TensorShape{6, 6, 3, 3}, TensorShape{4, 18, 18, 18}, TensorShape{4, 9, 18, 18}, TensorShape{4, 6, 18, 18}}); } TEST(TestOprDNN, FastrunIgnoreBatchSizeMatrixMul) { REQUIRE_GPU(1); //! fastrun_shared_batch_size == 20 //! {20(12), 12(1)}, {12(12), 20(1)} -> {20(12), 20(1)} origin //! {12(10), 20(1)}, {12(12), 20(1)} -> {20(12), 20(1)} transA //! {12(10), 20(1)}, {20(12), 12(1)} -> {20(12), 20(1)} transA, transB //! {20(12), 12(1)}, {20(12), 12(1)} -> {20(12), 20(1)} transB //! //! {20(12), 12(1)}, {12(12), 20(1)} -> {20(12), 20(1)} origin duplicate //! {12(4), 20(1)}, {12(12), 20(1)} -> {20(12), 20(1)} transA //! {12(4), 20(1)}, {20(12), 12(1)} -> {20(12), 20(1)} transA, transB //! {20(12), 12(1)}, {20(12), 12(1)} -> {20(12), 20(1)} transB duplicate test_fastrun_opr( {TensorShape{10, 12}, TensorShape{12, 12}}, {TensorShape{4, 12}, TensorShape{12, 12}}, 4, 2); } TEST(TestOprDNN, FastrunIgnoreBatchSizeBatchedMatrixMul) { REQUIRE_GPU(1); //! fastrun_shared_batch_size == 20 //! {20(48), 6(8), 8(1)}, {20(32), 8(4), 4(1)} -> {20(24), 6(4), 4(1)} origin //! {20(48), 8(6), 6(1)}, {20(32), 8(4), 4(1)} -> {20(24), 6(4), 4(1)} transA //! {20(48), 8(6), 6(1)}, {20(32), 4(8), 8(1)} -> {20(24), 6(4), 4(1)} transA, transB //! {20(48), 6(8), 8(1)}, {20(32), 4(8), 8(1)} -> {20(24), 6(4), 4(1)} transB //! //! {20(48), 6(8), 8(1)}, {20(32), 8(4), 4(1)} -> {20(24), 6(4), 4(1)} origin duplicate //! {20(48), 8(6), 6(1)}, {20(32), 8(4), 4(1)} -> {20(24), 6(4), 4(1)} transA duplicate //! {20(48), 8(6), 6(1)}, {20(32), 4(8), 8(1)} -> {20(24), 6(4), 4(1)} transA, transB duplicate //! {20(48), 6(8), 8(1)}, {20(32), 4(8), 8(1)} -> {20(24), 6(4), 4(1)} transB duplicate test_fastrun_opr( {TensorShape{12, 6, 8}, TensorShape{12, 8, 4}}, {TensorShape{4, 6, 8}, TensorShape{4, 8, 4}}); } #endif // MGB_ENABLE_FASTRUN #endif // MGB_CUDA } // anonymous namespace // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}