#include "src/common/conv_bias.h" #include "src/cuda/conv_bias/algo.h" #include "src/cuda/cudnn_wrapper.h" #include "src/cuda/utils.h" using namespace megdnn; using namespace cuda; using namespace conv_bias; bool ConvBiasForwardImpl::AlgoCUDNNConv::is_available(const SizeArgs& args) const { if (args.filter_meta.format != Param::Format::NCHW && args.filter_meta.format != Param::Format::NHWC) { if (!args.src_layout->is_contiguous() || !args.dst_layout->is_contiguous()) { return false; } } if (args.dst_layout->dtype.enumv() == DTypeEnum::QuantizedS4 || args.dst_layout->dtype.enumv() == DTypeEnum::Quantized4Asymm) { return false; } // FIXME: cudnn cannot handle the case when the initial value of dst tensor // contains nan and beta is zero, because the result of 0.f * nan is still // nan if (args.src_layout->dtype.enumv() == DTypeEnum::QuantizedS8 && args.dst_layout->dtype.enumv() == DTypeEnum::Float32 && args.opr->param().format == param::ConvBias::Format::NCHW) { return false; } // In conv_args.init_conv_desc will call cudnnSetTensor4dDescriptorEx(),which can't // been supported when total_nr_elems() > 2 ^ 31 if (args.src_layout->total_nr_elems() > INT_MAX || args.dst_layout->total_nr_elems() > INT_MAX) { return false; } auto dst_layout = *args.dst_layout; if (dst_layout.dtype.enumv() != args.bias_layout->dtype.enumv()) { dst_layout.dtype = DType(); args.opr->check_or_deduce_dtype_fwd( args.src_layout->dtype, args.filter_layout->dtype, dst_layout.dtype); } SizeArgs conv_args = args; conv_args.dst_layout = &dst_layout; if (!is_cudnn_supported(conv_args)) return false; CUDNNForwardDescs D; conv_args.init_conv_desc(D); size_t workspace_size; auto status = cudnnGetConvolutionForwardWorkspaceSize( conv_args.handle->cudnn_handle(), D.src_desc.desc, D.filter_desc.desc, D.conv_desc.conv_desc, D.dst_desc.desc, m_cudnn_enum, &workspace_size); return status == CUDNN_STATUS_SUCCESS; } size_t ConvBiasForwardImpl::AlgoCUDNNConv::cudnn_get_workspace_in_bytes( const SizeArgs& args) const { CUDNNForwardDescs D; args.init_conv_desc(D); size_t conv_workspace_size; cudnn_check(cudnnGetConvolutionForwardWorkspaceSize( args.handle->cudnn_handle(), D.src_desc.desc, D.filter_desc.desc, D.conv_desc.conv_desc, D.dst_desc.desc, m_cudnn_enum, &conv_workspace_size)); return conv_workspace_size; } void ConvBiasForwardImpl::AlgoCUDNNConv::cudnn_execute( const ExecArgs& args, const Workspace& workspace) const { CUDNNForwardDescs D; args.init_conv_desc(D); float alpha = 1.0f, beta = 0.0f; auto status = cudnnConvolutionForward( args.handle->cudnn_handle(), &alpha, D.src_desc.desc, args.src_tensor->raw_ptr(), D.filter_desc.desc, args.filter_tensor->raw_ptr(), D.conv_desc.conv_desc, m_cudnn_enum, workspace.raw_ptr, workspace.size, &beta, D.dst_desc.desc, args.dst_tensor->raw_ptr()); megdnn_assert( status == CUDNN_STATUS_SUCCESS, "conv fwd failed: %s; info: %s", cudnnGetErrorString(status), args.to_string().c_str()); } // vim: syntax=cpp.doxygen