# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest from megengine import tensor from megengine.module import Conv2d, Linear from megengine.module.init import calculate_fan_in_and_fan_out, fill_ def test_fill_(): x = tensor(np.zeros((2, 3, 4)), dtype=np.float32) fill_(x, 5.0) np.testing.assert_array_equal( x.numpy(), np.full(shape=(2, 3, 4), fill_value=5.0, dtype=np.float32) ) def test_calculate_fan_in_and_fan_out(): l = Linear(in_features=3, out_features=8) fanin, fanout = calculate_fan_in_and_fan_out(l.weight) assert fanin == 3 assert fanout == 8 with pytest.raises(ValueError): calculate_fan_in_and_fan_out(l.bias) l = Conv2d(in_channels=2, out_channels=3, kernel_size=(5, 7)) fanin, fanout = calculate_fan_in_and_fan_out(l.weight) assert fanin == 2 * 5 * 7 assert fanout == 3 * 5 * 7