/** * \file dnn/src/fallback/conv_bias/im2col/algos.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "src/fallback/conv_bias/im2col/strategy_base.h" #include "src/fallback/convolution/img2col_helper.h" namespace megdnn { template void Strategy:: packA_kern(WorkspaceBundle bundle, const fallback::ConvBiasImpl::NCBKernParam& param, fallback::MatrixMulImpl::KernSizeParam matmulparam, fallback::MatrixMulImpl::AlgoBase* matmul_algo, const fallback::ConvBiasImpl::NCBKernIndex& ncb_index, size_t) { bundle.set(param.workspace_ptr); fallback::MatrixMulImpl::KernParam matmul_param; static_cast(matmul_param) = matmulparam; size_t OC = param.filter_meta.ocpg; size_t oc_tile_size = matmul_param.M; size_t group_id = ncb_index.ndrange_id[0]; size_t output_block_oc_size = std::min(oc_tile_size, OC - ncb_index.ndrange_id[1] * oc_tile_size); size_t oc_cur_index = ncb_index.ndrange_id[1] * oc_tile_size; size_t packA_group_size = bundle.get_size(BUNDLE_PACKA_INDEX) / param.filter_meta.group; size_t a_panel_offset = ncb_index.ndrange_id[1] * matmul_algo->get_bundle(matmul_param).get_size(0); int8_t* a_panel = static_cast(bundle.get(BUNDLE_PACKA_INDEX)) + group_id * packA_group_size + a_panel_offset; matmul_param.A_ptr = const_cast(param.filter(group_id)) + oc_cur_index * matmul_param.K; matmul_param.M = output_block_oc_size; matmul_algo->pack_A(matmul_param, a_panel, 0_z, 0_z); } template void Strategy:: exec_matmul(const fallback::ConvBiasImpl::NCBKernParam& param, const StrategyParam& sparam, WorkspaceBundle bundle, WorkspaceBundle bundle_thread, fallback::MatrixMulImpl::KernParam matmul_param, fallback::MatrixMulImpl::AlgoBase* matmul_algo, const fallback::ConvBiasImpl::NCBKernIndex& ncb_index) { size_t packA_group_size = bundle.get_size(BUNDLE_PACKA_INDEX) / param.filter_meta.group; size_t a_panel_offset = ncb_index.ndrange_id[3] * matmul_algo->get_bundle(matmul_param).get_size(0); a_panel_offset = sparam.group_id * packA_group_size + a_panel_offset; void* matmul_dst = get_matmul_dst_ptr(param, bundle_thread, sparam); src_ctype* a_panel = reinterpret_cast( reinterpret_cast(bundle.get(BUNDLE_PACKA_INDEX)) + a_panel_offset); src_ctype* b_panel = nullptr; src_ctype* im2col_dst = static_cast( bundle_thread.get(THREAD_BUNDLE_IM2COL_INDEX)); matmul_param.M = sparam.output_block_oc_size; matmul_param.N = sparam.output_block_size; matmul_param.LDB = sparam.output_block_size; matmul_param.LDC = sparam.output_block_size; matmul_param.B_ptr = im2col_dst; matmul_param.C_ptr = matmul_dst; auto matmul_kern = matmul_algo->get_kern_naked(matmul_param); matmul_kern(matmul_param, a_panel, b_panel); } template void Strategy:: exec_im2col(WorkspaceBundle bundle, WorkspaceBundle bundle_thread, const StrategyParam& sparam, const fallback::ConvBiasImpl::NCBKernParam& param, fallback::MatrixMulImpl::KernParam matmul_param, fallback::MatrixMulImpl::AlgoBase* matmul_algo) { MEGDNN_MARK_USED_VAR(matmul_param); MEGDNN_MARK_USED_VAR(matmul_algo); size_t sh = param.filter_meta.stride[0]; size_t sw = param.filter_meta.stride[1]; size_t oc = param.filter_meta.ocpg; size_t oh = param.osz[0]; size_t ow = param.osz[1]; size_t ic = param.filter_meta.icpg; size_t ih = param.isz[0] + param.filter_meta.padding[0] * 2; size_t iw = param.isz[1] + param.filter_meta.padding[1] * 2; size_t fh = param.filter_meta.spatial[0]; size_t fw = param.filter_meta.spatial[1]; size_t is_xcorr = !param.filter_meta.should_flip; size_t input_offset = ih * iw * ic * (sparam.group_id + param.filter_meta.group * sparam.batch_id) * sizeof(src_ctype); src_ctype* src2 = reinterpret_cast( reinterpret_cast(bundle.get(BUNDLE_PADDING_INDEX)) + input_offset); bool is_phpwzero = param.filter_meta.padding[0] == 0 && param.filter_meta.padding[1] == 0; if (is_phpwzero) { src2 = const_cast( param.src(sparam.batch_id, sparam.group_id)); } src_ctype* im2col_dst = static_cast( bundle_thread.get(THREAD_BUNDLE_IM2COL_INDEX)); if (sh == 1 && sw == 1) { if (is_xcorr) { img2col(src2, im2col_dst, oc, oh, ow, ic, ih, iw, fh, fw, sparam.ohw_cur_index, sparam.output_block_size); } else { img2col(src2, im2col_dst, oc, oh, ow, ic, ih, iw, fh, fw, sparam.ohw_cur_index, sparam.output_block_size); } } else { if (is_xcorr) { img2col_stride(src2, im2col_dst, oc, oh, ow, ic, ih, iw, fh, fw, sh, sw, sparam.ohw_cur_index, sparam.output_block_size); } else { img2col_stride(src2, im2col_dst, oc, oh, ow, ic, ih, iw, fh, fw, sh, sw, sparam.ohw_cur_index, sparam.output_block_size); } } } template void* Strategy:: get_matmul_dst_ptr(const fallback::ConvBiasImpl::NCBKernParam& param, const WorkspaceBundle& bundle_thread, const StrategyParam& sparam) { if (sparam.is_dst_8bit || !sparam.is_ohw_size_bigger) { return static_cast( bundle_thread.get(THREAD_BUNDLE_MATMULDST_INDEX)); } else { bias_ctype* dst = param.dst(sparam.batch_id, sparam.group_id) + sparam.oc_cur_index * sparam.ohw; return static_cast(dst); } } #define INSTANTIAL_CLASS(_src_ctype, _bias_ctype, _dst_ctype, _op_ctype, \ _op_dtype, _postprocess_mode) \ template class Strategy<_src_ctype, _bias_ctype, _dst_ctype, _op_ctype, \ _op_dtype, _postprocess_mode, \ PackMode::ONLY_PACKA>; INSTANTIAL_CLASS(dt_float32, dt_float32, dt_float32, dt_float32, dt_float32, megdnn::PostprocessMode::FLOAT) #undef INSTANTIAL_CLASS } // namespace megdnn // vim: syntax=cpp.doxygen