# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine.functional as F from megengine import tensor def test_cross_entropy_with_logits(): data = tensor([[0, 50], [0, -150]]).astype(np.float32) label = tensor([1, 0]).astype(np.int32) loss = F.nn.cross_entropy(data, label) np.testing.assert_allclose(loss.numpy(), 0.0) label = tensor([0, 1]).astype(np.int32) loss = F.nn.cross_entropy(data, label) np.testing.assert_allclose(loss.numpy(), 100) label = np.array([1, 0]) loss = F.nn.cross_entropy(data, label) np.testing.assert_allclose(loss.numpy(), 0.0) def test_cross_entropy(): def softmax(x): x = np.exp(x) x /= x.sum(1, keepdims=True) return x def ref(x, y): return np.mean([-np.log(x[i, y[i]]) for i in range(len(y))]) x = (np.random.rand(5, 10) - 0.5) * 4 y = np.random.randint(10, size=(5,)) for i in range(len(x)): x[i, y[i]] += np.random.rand() * 2 x = softmax(x) l_ref = ref(x, y) l = F.nn.cross_entropy(tensor(x, "float32"), tensor(y, "int32"), with_logits=False) np.testing.assert_allclose(l.numpy(), l_ref)