# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest import megengine.core.tensor.raw_tensor from megengine.core.tensor.core import apply def elemwise(*args, mode): from megengine.core.ops.builtin import Elemwise from megengine.core._imperative_rt.imperative import apply_op return apply_op(Elemwise(mode=mode).to_c(), args) def test_basic_interface(): cf = megengine.core._imperative_rt.OperatorNodeConfig() cf.name = "megengine.core" cf.dtype = "float32" cf.comp_node_arr = ["xpux"] print(cf.name) print(cf.dtype) print(cf.comp_node_arr) print(cf.comp_node) cf.comp_node_arr = ["xpux", "xpux:1"] with pytest.raises(ValueError): cf.comp_node def test_opr_attr(): from megengine.core.ops.builtin import Elemwise assert Elemwise(mode="add") == Elemwise(mode="add") def test_simple_arith(): x = np.random.rand(10).astype("float32") xx = megengine.core._imperative_rt.put(x) (yy,) = elemwise(xx, xx, mode="mul") np.testing.assert_allclose(x * x, megengine.core._imperative_rt.get_value(yy)) megengine.core._imperative_rt.delete(xx) megengine.core._imperative_rt.delete(yy) def test_tensor_on_device(): device = megengine.core._imperative_rt.CompNode("cpu0:1") x = np.random.rand(10).astype("float32") xx = megengine.core._imperative_rt.put(x, device=device) assert str(megengine.core._imperative_rt.get_device(xx)) == "cpu0:1" np.testing.assert_equal(x, megengine.core._imperative_rt.get_value(xx)) megengine.core._imperative_rt.delete(xx) def test_raw_tensor(): from megengine.core.tensor.raw_tensor import as_raw_tensor from megengine.core.ops.builtin import Elemwise x = np.random.rand(10).astype("float32") xx = as_raw_tensor(x) (yy,) = apply(Elemwise(mode="mul"), xx, xx) np.testing.assert_allclose(x * x, yy.numpy()) (yy,) = apply(Elemwise(mode="mul"), xx, xx) np.testing.assert_allclose(x * x, yy.numpy())