/** * \file dnn/src/cuda/conv_bias/chanwise_8x8x32.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "./algo.h" #include "src/cuda/utils.h" #include "src/cuda/conv_bias/chanwise/kern.cuh" #include "src/common/conv_bias.h" #include "src/common/elemwise/kern_defs.cuh" using namespace megdnn; using namespace cuda; using namespace conv_bias; bool ConvBiasForwardImpl::AlgoChanwise8x8x32::is_available( const SizeArgs& args) const { if (!args.src_layout->is_contiguous() || !args.dst_layout->is_contiguous()) { return false; } if (args.z_layout->ndim > 0) return false; using NonlineMode = param::ConvBias::NonlineMode; auto&& fm = args.filter_meta; return (args.nonlinear_mode == NonlineMode::IDENTITY || args.nonlinear_mode == NonlineMode::RELU) && args.filter_meta.format == Param::Format::NHWC && args.src_layout->dtype == dtype::Int8() && fm.dtype.enumv() == DTypeEnum::Int8 && fm.spatial_ndim == 2 && fm.icpg == 1 && fm.ocpg == 1 && fm.group % 4 == 0; } size_t ConvBiasForwardImpl::AlgoChanwise8x8x32::get_workspace_in_bytes( const SizeArgs& args) const { auto dst_layout = *args.dst_layout; if (dst_layout.dtype.enumv() != args.bias_layout->dtype.enumv()) { dst_layout.dtype = DType(); args.opr->check_or_deduce_dtype_fwd(args.src_layout->dtype, args.filter_layout->dtype, dst_layout.dtype); return dst_layout.span().dist_byte(); } return 0; } void ConvBiasForwardImpl::AlgoChanwise8x8x32::exec(const ExecArgs& args) const { WorkspaceBundle bundle{args.workspace.raw_ptr, {get_workspace_in_bytes(args)}}; auto conv_dst_tensor = *args.dst_tensor; if (args.dst_layout->dtype.enumv() != args.bias_layout->dtype.enumv()) { conv_dst_tensor.raw_ptr = bundle.get(0); conv_dst_tensor.layout.dtype = DType(); args.opr->check_or_deduce_dtype_fwd(args.src_layout->dtype, args.filter_layout->dtype, conv_dst_tensor.layout.dtype); } { auto kparam = chanwise::Param::from_fwd_args(args); auto stream = cuda_stream(args.handle); chanwise::run_fwd_8x8x32(conv_dst_tensor.ptr(), args.src_tensor->ptr(), args.filter_tensor->ptr(), kparam, stream); } handle_bias_and_nonlinear(args.handle, args.nonlinear_mode, &conv_dst_tensor, args.dst_tensor, args.bias_tensor); } // vim: syntax=cpp.doxygen