# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import itertools import numpy as np import pytest import torch import megengine as mge from megengine import Parameter, tensor from megengine.module import Conv2d, ConvTranspose2d from megengine.test import assertTensorClose def test_conv_transpose2d(): SH, SW = 3, 1 PH, PW = 2, 0 N, IC, IH, IW = 4, 5, 8, 6 KH, KW = 3, 4 OC = 3 BIAS = True def getsize(inp, kern, stride): return (inp - 1) * stride + kern OH = getsize(IH, KH, SH) OW = getsize(IW, KW, SW) inp = np.random.normal(size=(N, IC, IH, IW)).astype(np.float32) out = np.zeros((N, OC, OH, OW), dtype=np.float32) weight = np.random.normal(size=(IC, OC, KH, KW)).astype(np.float32) bias = np.random.normal(size=(1, OC, 1, 1)).astype(np.float32) for n, ic, ih, iw in itertools.product(*map(range, [N, IC, IH, IW])): oh, ow = ih * SH, iw * SW out[n, :, oh : oh + KH, ow : ow + KW] += inp[n, ic, ih, iw] * weight[ic] out = out[:, :, PH : OH - PH, PW : OW - PW] if BIAS: out += bias conv_transpose2d = ConvTranspose2d(IC, OC, (KH, KW), (SH, SW), (PH, PW), bias=BIAS) conv_transpose2d.weight = Parameter(weight, dtype=np.float32) if BIAS: conv_transpose2d.bias = Parameter(bias, dtype=np.float32) y = conv_transpose2d(tensor(inp)) assertTensorClose(out, y.numpy(), max_err=2e-6) torch_conv_transpose2d = torch.nn.ConvTranspose2d( IC, OC, (KH, KW), stride=(SH, SW), padding=(PH, PW), bias=BIAS ) torch_conv_transpose2d.weight = torch.nn.parameter.Parameter(torch.Tensor(weight)) if BIAS: torch_conv_transpose2d.bias = torch.nn.parameter.Parameter( torch.Tensor(bias).reshape(OC) ) torch_y = torch_conv_transpose2d(torch.Tensor(inp)) assertTensorClose(torch_y.detach().numpy(), y.numpy(), max_err=2e-6)