# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import io from tempfile import mkstemp import numpy as np import pytest import megengine import megengine.module as M from megengine import cgtools, tensor from megengine.core._trace_option import set_tensor_shape from megengine.core.ops import builtin as ops from megengine.core.tensor import megbrain_graph as G from megengine.core.tensor.core import apply from megengine.core.tensor.raw_tensor import as_raw_tensor from megengine.functional import exp, log from megengine.jit import exclude_from_trace, trace def load_and_inference(file, inp_data): cg, _, out_list = G.load_graph(file) inputs = cgtools.get_dep_vars(out_list, "Host2DeviceCopy") replace_dict = {} inp_node_list = [] for i in inputs: inp_node = G.InputNode( device="xpux", dtype=inputs[0].dtype, graph=inputs[0].graph ) replace_dict[i] = inp_node.outputs[0] inp_node_list.append(inp_node) new_out = cgtools.replace_vars(out_list, replace_dict) out_node_list = [G.OutputNode(i) for i in new_out] new_out_list = [i.outputs[0] for i in out_node_list] new_cg = new_out_list[0].graph func = new_cg.compile(new_out_list) for node, value in zip(inp_node_list, inp_data): node.set_value(as_raw_tensor(value)._dev_tensor()) func.execute() out_data_list = [o.get_value().numpy() for o in out_node_list] return out_data_list def test_trace(): for symbolic in [False, True]: @trace(symbolic=symbolic) def f(x): op = ops.Elemwise(mode="negate") (y,) = apply(op, x) return y x = as_raw_tensor([1]).numpy() y = f.__wrapped__(as_raw_tensor(x)).numpy() for i in range(3): np.testing.assert_equal(f(as_raw_tensor(x)).numpy(), y) def test_exclude_from_trace(): for symbolic in [False, True]: @trace(symbolic=symbolic) def f(x): neg = ops.Elemwise(mode="negate") (x,) = apply(neg, x) with exclude_from_trace(): if i % 2: (x,) = apply(neg, x) (x,) = apply(neg, x) return x x = as_raw_tensor([1]).numpy() for i in range(3): y = f.__wrapped__(as_raw_tensor(x)).numpy() np.testing.assert_equal(f(as_raw_tensor(x)).numpy(), y) def test_print_in_trace(): for symbolic in [False]: # cannot read value in symbolic mode @trace(symbolic=symbolic) def f(x): nonlocal buf neg = ops.Elemwise(mode="negate") (x,) = apply(neg, x) buf = x.numpy() (x,) = apply(neg, x) return x buf = None x = as_raw_tensor([1]).numpy() for i in range(3): y = f.__wrapped__(as_raw_tensor(x)).numpy() z = buf buf = None np.testing.assert_equal(f(as_raw_tensor(x)).numpy(), y) np.testing.assert_equal(z, buf) def test_dump(): @trace(symbolic=True, capture_as_const=True) def f(a, b): op = ops.Elemwise(mode="add") (y,) = apply(op, a, b) return y a = as_raw_tensor([2]).numpy() b = as_raw_tensor([4]).numpy() y = f.__wrapped__(as_raw_tensor(a), as_raw_tensor(b)).numpy() for i in range(3): np.testing.assert_equal(f(as_raw_tensor(a), as_raw_tensor(b)).numpy(), y) file = io.BytesIO() f.dump(file) file.seek(0) result = load_and_inference(file, [a, b]) np.testing.assert_equal(result[0], y) def test_capture_dump(): a = as_raw_tensor([2]) @trace(symbolic=True, capture_as_const=True) def f(x): op = ops.Elemwise(mode="mul") (y,) = apply(op, x, a) return y x = as_raw_tensor([3]).numpy() y = f.__wrapped__(as_raw_tensor(x)).numpy() for i in range(3): np.testing.assert_equal(f(as_raw_tensor(x)).numpy(), y) file = io.BytesIO() f.dump(file) file.seek(0) result = load_and_inference(file, [x]) np.testing.assert_equal(result[0], y) def test_dump_volatile(): p = as_raw_tensor([2]) @trace(symbolic=True, capture_as_const=True) def f(x): op = ops.Elemwise(mode="mul") (y,) = apply(op, x, p) return y x = as_raw_tensor([3]).numpy() y = f.__wrapped__(as_raw_tensor(x)).numpy() for i in range(3): np.testing.assert_equal(f(as_raw_tensor(x)).numpy(), y) file = io.BytesIO() f.dump(file, optimize_for_inference=False) file.seek(0) cg, _, outputs = G.load_graph(file) (out,) = outputs assert ( cgtools.get_owner_opr_type(cgtools.get_owner_opr_inputs(out)[1]) == "SharedDeviceTensor" ) def test_trace_profiler(): for symbolic in [False, True]: @trace(symbolic=symbolic, profiling=True) def f(x): op = ops.Elemwise(mode="negate") (y,) = apply(op, x) return y x = as_raw_tensor([1]).numpy() y = f.__wrapped__(as_raw_tensor(x)).numpy() f(as_raw_tensor(x)) f(as_raw_tensor(x)) # XXX: has to run twice out = f.get_profile() assert out.get("profiler") @pytest.mark.skip(reason="could not disable opt_level") def test_goptions_log_exp(): @trace(symbolic=True, opt_level=0, capture_as_const=True) def f(x): return log(exp(x)) @trace(symbolic=True, opt_level=1, capture_as_const=True) def g(x): return log(exp(x)) f(tensor(1.0)) _, out = mkstemp() f.dump(out, optimize_for_inference=False) *_, outputs = G.load_graph(out) oprs_1 = cgtools.get_oprs_seq(outputs) g(tensor(1.0)) g.dump(out, optimize_for_inference=False) *_, outputs = G.load_graph(out) oprs_2 = cgtools.get_oprs_seq(outputs) assert len(oprs_1) - len(oprs_2) == 2 @pytest.mark.skip(reason="could not disable opt_level") def test_goptions_log_sum_exp(): @trace(symbolic=True, opt_level=0, capture_as_const=True) def f(x, y): return log(exp(x) + exp(y)) @trace(symbolic=True, opt_level=1, capture_as_const=True) def g(x, y): return log(exp(x) + exp(y)) f(tensor(1.0), tensor(2.0)) _, out = mkstemp() f.dump(out, optimize_for_inference=False) *_, outputs = G.load_graph(out) oprs_1 = cgtools.get_oprs_seq(outputs) g(tensor(1.0), tensor(2.0)) g.dump(out, optimize_for_inference=False) *_, outputs = G.load_graph(out) oprs_2 = cgtools.get_oprs_seq(outputs) assert len(oprs_1) - len(oprs_2) == 2 def test_optimize_for_inference(): @trace(symbolic=True, capture_as_const=True) def f(x): return exp(x) _, out = mkstemp() f(tensor(5.0)) f.dump(out, enable_io16xc32=True) res = G.load_graph(out) computing_input = res.output_vars_list[0].owner.inputs[0] assert computing_input.dtype == np.float16 def test_trace_cvt_bool(): set_tensor_shape(True) x = tensor([0], dtype=np.int32) @trace(symbolic=True) def f(x): return x.shape[0] == 0 for i in range(3): np.testing.assert_equal(f(x).numpy()[0], False)