import numpy as np from megengine import tensor def _default_compare_fn(x, y): np.testing.assert_allclose(x.numpy(), y, rtol=1e-6) def opr_test(cases, func, compare_fn=_default_compare_fn, ref_fn=None, **kwargs): """ :param cases: the list which have dict element, the list length should be 2 for dynamic shape test. and the dict should have input, and should have output if ref_fn is None. should use list for multiple inputs and outputs for each case. :param func: the function to run opr. :param compare_fn: the function to compare the result and expected, use ``np.testing.assert_allclose`` if None. :param ref_fn: the function to generate expected data, should assign output if None. Examples: .. code-block:: dtype = np.float32 cases = [{"input": [10, 20]}, {"input": [20, 30]}] opr_test(cases, F.eye, ref_fn=lambda n, m: np.eye(n, m).astype(dtype), dtype=dtype) """ def check_results(results, expected): if not isinstance(results, (tuple, list)): results = (results,) for r, e in zip(results, expected): compare_fn(r, e) def get_param(cases, idx): case = cases[idx] inp = case.get("input", None) outp = case.get("output", None) if inp is None: raise ValueError("the test case should have input") if not isinstance(inp, (tuple, list)): inp = (inp,) if ref_fn is not None and callable(ref_fn): outp = ref_fn(*inp) if outp is None: raise ValueError("the test case should have output or reference function") if not isinstance(outp, (tuple, list)): outp = (outp,) return inp, outp if len(cases) == 0: raise ValueError("should give one case at least") if not callable(func): raise ValueError("the input func should be callable") inp, outp = get_param(cases, 0) inp_tensor = [tensor(inpi) for inpi in inp] results = func(*inp_tensor, **kwargs) check_results(results, outp)