from bisect import bisect_right from typing import Iterable as Iter from .lr_scheduler import LRScheduler from .optimizer import Optimizer class MultiStepLR(LRScheduler): r"""Decays the learning rate of each parameter group by gamma once the number of epoch reaches one of the milestones. :param optimizer: Wrapped optimizer. :param milestones (list): List of epoch indices. Must be increasing. :param gamma (float): Multiplicative factor of learning rate decay. Default: 0.1. :param current_epoch: The index of current epoch. Default: -1. """ def __init__( self, optimizer: Optimizer, milestones: Iter[int], gamma: float = 0.1, current_epoch: int = -1, ): if not list(milestones) == sorted(milestones): raise ValueError( "Milestones should be a list of increasing integers. Got {}".format( milestones ) ) self.milestones = milestones self.gamma = gamma super().__init__(optimizer, current_epoch) def state_dict(self): r"""Returns the state of the scheduler as a :class:`dict`. It contains an entry for every variable in self.__dict__ which is not the optimizer. """ return { key: value for key, value in self.__dict__.items() if key in ["milestones", "gamma", "current_epoch"] } def load_state_dict(self, state_dict): r"""Loads the schedulers state. :param state_dict (dict): scheduler state. """ tmp_dict = {} for key in ["milestones", "gamma", "current_epoch"]: if not key in state_dict.keys(): raise KeyError( "key '{}'' is not specified in " "state_dict when loading state dict".format(key) ) tmp_dict[key] = state_dict[key] self.__dict__.update(tmp_dict) def get_lr(self): return [ base_lr * self.gamma ** bisect_right(self.milestones, self.current_epoch) for base_lr in self.base_lrs ]