# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. from ... import _internal as mgb from ...core import Tensor, wrap_io_tensor from ...core.graph import _use_default_if_none from ..qat import elemwise as QAT from .module import QuantizedModule @wrap_io_tensor def _elemwise_multi_type(mode, *inputs, **kwargs) -> Tensor: if all(isinstance(i, (int, float)) for i in inputs): device, comp_graph = _use_default_if_none(None, None) ret = mgb.opr.elemwise_multi_type( *inputs, mode=mode, comp_node=device, comp_graph=comp_graph, **kwargs, ) return ret.inferred_value[0] return mgb.opr.elemwise_multi_type(*inputs, mode=mode, **kwargs) class Elemwise(QuantizedModule): r"""quantized version of :class:`~.qat.elemwise.Elemwise`.""" _elemwise_multi_type_mode = mgb.opr_param_defs.ElemwiseMultiType.Mode def __init__(self, method, dtype=None): super().__init__() self.method = self._elemwise_multi_type_mode.convert("Q" + method) self.output_dtype = dtype def forward(self, *inps): if self.training: raise ValueError("quantized module only support inference.") return _elemwise_multi_type(self.method, *inps, dtype=self.output_dtype) @classmethod def from_qat_module(cls, qat_module: QAT.Elemwise): r""" return a :class:`~.QuantizedModule` instance converted from a :class:`~.QATModule` instance. """ return cls(qat_module.method.name, qat_module.get_activation_dtype())