#pragma once #include "src/aarch64/conv_bias/opr_impl.h" #include "src/common/opr_delegate.h" #include "src/fallback/conv_bias/opr_impl.h" namespace megdnn { namespace aarch64 { using FallbackConvBiasImpl = fallback::ConvBiasImpl; class ConvBiasImpl::AlgoQU8MatrixMul final : public AlgoBase { static WorkspaceBundle get_bundle(const NCBKernSizeParam& param); static void kimpl(const NCBKernParam& param, const NCBKernIndex&); public: AlgoAttribute attribute() const override { return AlgoAttribute::REPRODUCIBLE; } const char* name() const override { return "QU8MATMUL"; } bool usable( const NCBKernSizeParam& param, AlgoSelectionStrategy algo_selection_strategy) const override; size_t get_workspace(const NCBKernSizeParam& param) const override { return get_bundle(param).total_size_in_bytes(); } SmallVector dispatch_kerns(const NCBKernSizeParam& param) const override { size_t group = param.filter_meta.group; return {{kimpl, {group, 1_z, 1_z}}}; } //! select matmul to the highest preference bool is_preferred(const NCBKernSizeParam& param) const override { static CpuOprDelegationStorage<1> storage; auto conv_bias_opr = storage.get(); return static_cast(conv_bias_opr) ->is_matmul_quantized_prefer(param); } ConvAlgoTypePack get_algo_type() const override { return {AlgoDataType::QUINT8X8X32, AlgoCategory::IM2COL}; } MEGDNN_DECL_ALGO_TYPE(AARCH64_MATMUL_QU8) }; } // namespace aarch64 } // namespace megdnn // vim: syntax=cpp.doxygen