from copy import deepcopy from .. import functional as F from ..core import _config from ..module import Module from ..tensor import Tensor def _is_nchw_format(param: Tensor): # TODO: use better condition return (param.ndim == 4 or param.ndim == 5) and param.format != "nhwc" def convert_tensor_format(x: Tensor, inplace: bool = True): """Convert NCHW Tensor to NHWC Tensor.""" if not _is_nchw_format(x): return x if x.ndim != 4 and x.ndim != 5: raise ValueError("Unsupport tensor ndim {}".format(x.ndim)) if x.format != "nhwc": # hostvalue should still be valid, so no d2h cost. data = x.numpy() if inplace: # reset will destroy existed backward grad x[...] = Tensor(data, format="nhwc") else: # use mge interface to maintain grad x = Tensor(data, format="nhwc") return x def convert_module_format(module: Module, inplace: bool = True): """Convert NCHW Module to NHWC Module.""" if not inplace: module = deepcopy(module) for name, param in module.named_tensors(): convert_tensor_format(param, inplace=True) return module