/** * \file dnn/src/cuda/convolution/backward_data/group_conv.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or * implied. */ #include "./algo.h" using namespace megdnn; using namespace cuda; using namespace convolution; namespace { std::pair sub_opr_config( const ConvolutionBackwardDataImpl::AlgoBase::SizeArgs& args) { TensorLayout filter_pg = *args.filter_layout; TensorLayout diff_pg = *args.diff_layout; TensorLayout grad_pg = *args.grad_layout; filter_pg.remove_axis_inplace(0); auto nr_grp = args.filter_meta.group; size_t c_pos = 1; diff_pg.shape[c_pos] /= nr_grp; grad_pg.shape[c_pos] /= nr_grp; megdnn::param::Convolution param = args.opr->param(); param.sparse = megdnn::param::ConvBias::Sparse::DENSE; std::pair ret; ret.first = {filter_pg, diff_pg, grad_pg}; ret.second = param; return ret; } std::pair> prepare_sub_opr(const ConvolutionBackwardDataImpl::AlgoBase::SizeArgs& args) { auto conv_bwd_data_opr = args.handle->create_operator(); set_execution_policy( args.opr, conv_bwd_data_opr.get()); auto&& config = sub_opr_config(args); conv_bwd_data_opr->param() = config.second; return {config.first, std::move(conv_bwd_data_opr)}; } } // namespace std::vector ConvolutionBackwardDataImpl::AlgoGroupConvGeneral::get_subopr_list( const TensorLayoutArray& layouts, const OperatorBase* opr) const { AlgoBase::SizeArgs args{ static_cast(opr), layouts[0], layouts[1], layouts[2]}; auto&& config = sub_opr_config(args); std::string param_str; Algorithm::serialize_write_pod(config.second, param_str); return {{Algorithm::OprType::CONVOLUTION_BACKWARD_DATA, param_str, config.first}}; } bool ConvolutionBackwardDataImpl::AlgoGroupConvGeneral::is_available( const SizeArgs& args) const { if ((args.diff_layout->dtype == args.filter_layout->dtype && args.diff_layout->dtype == dtype::BFloat16()) || (args.diff_layout->dtype == args.filter_layout->dtype && args.diff_layout->dtype == dtype::QuantizedS8())) { return false; } if (args.filter_meta.group <= 1) return false; if (args.filter_meta.format != megdnn::param::Convolution::Format::NCHW) { return false; } auto config = prepare_sub_opr(args); return has_available_algo( static_cast(config.second.get()), config.first[0], config.first[1], config.first[2]); } WorkspaceBundle ConvolutionBackwardDataImpl::AlgoGroupConvGeneral::get_workspace_bundle( void* ptr, const SizeArgs& args) const { auto config = prepare_sub_opr(args); size_t sizes = config.second->get_workspace_in_bytes( config.first[0], config.first[1], config.first[2]); return {ptr, {sizes}}; } size_t ConvolutionBackwardDataImpl::AlgoGroupConvGeneral::get_workspace_in_bytes( const SizeArgs& args) const { return get_workspace_bundle(nullptr, args).total_size_in_bytes(); } void ConvolutionBackwardDataImpl::AlgoGroupConvGeneral::exec( const ExecArgs& args) const { auto bundle = get_workspace_bundle(args.workspace.raw_ptr, args); { auto config = prepare_sub_opr(args); TensorND tfilter{args.filter_tensor->raw_ptr, config.first[0]}; TensorND tdiff{args.diff_tensor->raw_ptr, config.first[1]}; TensorND tgrad{args.grad_tensor->raw_ptr, config.first[2]}; size_t c_pos = 1; auto&& fm = args.filter_meta; auto strd_flt = fm.icpg * fm.ocpg * fm.spatial[0] * fm.spatial[1] * tfilter.layout.dtype.size(), strd_diff = tdiff.layout.stride[c_pos] * fm.ocpg * tdiff.layout.dtype.size(), strd_grad = (tgrad.layout.stride[c_pos] * fm.icpg * tgrad.layout.dtype.size()); auto grp = args.filter_meta.group; for (uint32_t g = 0; g < grp; ++g) { config.second->exec(tfilter, tdiff, tgrad, bundle.get_workspace(0)); incr_voidp(tfilter.raw_ptr, strd_flt); incr_voidp(tdiff.raw_ptr, strd_diff); incr_voidp(tgrad.raw_ptr, strd_grad); } } } // vim: syntax=cpp.doxygen