# -*- coding: utf-8 -*- import platform import numpy as np import pytest import megengine import megengine.autodiff as ad import megengine.distributed as dist import megengine.optimizer as optimizer from megengine import Parameter, tensor from megengine.module import Module from megengine.optimizer import SGD class Simple(Module): def __init__(self, param_shape): super().__init__() self.params = [ Parameter(np.ones(param_shape), dtype=np.float32) for i in range(10) ] def forward(self, x): for p in self.params: x = x * p return x @pytest.mark.require_ngpu(2) @pytest.mark.isolated_distributed @pytest.mark.parametrize( "threshold", [0, 128, None], ids=["no_pack", "small_pack", "large_pack"] ) @pytest.mark.parametrize("param_shape", [(16,), (128, 256), (2, 1024, 1024)]) def test_param_pack(param_shape, threshold, n_iters=100): data = np.ones(param_shape, dtype="float32") @dist.launcher(n_gpus=2) def worker(): net = Simple(param_shape) opt = SGD(net.parameters(), lr=0.1) allreduce_cb = dist.make_allreduce_cb("MEAN", dist.WORLD) if threshold is not None: allreduce_cb._param_pack_thd = threshold gm = ad.GradManager().attach(net.parameters(), callbacks=[allreduce_cb]) def run(): opt.clear_grad() with gm: x = tensor(data) loss = net(x) loss = loss.sum() gm.backward(loss) for i in range(n_iters): run() for p in net.params: np.testing.assert_equal(p.grad.numpy(), np.ones_like(p.grad.numpy())) worker()