# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import pickle import numpy as np import megengine.functional as F import megengine.module as M from megengine import Tensor from megengine.module import Module from megengine.traced_module import trace_module class MyBlock(Module): def __init__(self, in_channels, channels): super(MyBlock, self).__init__() self.conv1 = M.Conv2d(in_channels, channels, 3, 1, padding=1, bias=False) self.bn1 = M.BatchNorm2d(channels) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = F.relu(x) + 1 return x class MyModule(Module): def __init__(self): super(MyModule, self).__init__() self.block0 = MyBlock(8, 4) self.block1 = MyBlock(4, 2) def forward(self, x): x = self.block0(x) x = self.block1(x) return x def test_dump_and_load(): module = MyModule() x = Tensor(np.ones((1, 8, 14, 14))) expect = module(x) traced_module = trace_module(module, x) np.testing.assert_array_equal(expect, traced_module(x)) obj = pickle.dumps(traced_module) pickle.loads(obj) np.testing.assert_array_equal(expect, traced_module(x))