|
- #include "test/arm_common/fixture.h"
-
- #include "test/common/benchmarker.h"
- #include "test/common/checker.h"
- #include "test/common/pooling.h"
- #include "test/common/rng.h"
- #include "test/common/task_record_check.h"
-
- namespace megdnn {
- namespace test {
-
- TEST_F(ARM_COMMON, POOLING) {
- using Param = param::Pooling;
- // clang-format off
- for (size_t ih: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
- for (size_t iw: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
- for (size_t p: {1, 2})
- {
- Param param;
- param.mode = Param::Mode::MAX;
- param.window_h = param.window_w = 3;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = p;
- Checker<Pooling> checker(handle());
- checker.set_param(param).exec({{2, 3, ih, iw}, {}});
-
- param.mode = Param::Mode::AVERAGE;
- param.window_h = param.window_w = 3;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = p;
- checker.set_param(param).exec({{2, 3, ih, iw}, {}});
-
- param.mode = Param::Mode::MAX;
- param.window_h = param.window_w = 4;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = p;
- checker.set_param(param).exec({{2, 3, ih, iw}, {}});
-
- param.mode = Param::Mode::MAX;
- param.window_h = param.window_w = 5;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = p;
- if (ih + p * 2 >= 5 && iw + p * 2 >= 5)
- checker.set_param(param).exec({{2, 3, ih, iw}, {}});
- }
- for (size_t ih: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
- for (size_t iw: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
- for (size_t p: {1, 2})
- {
- Param param;
- param.mode = Param::Mode::AVERAGE_COUNT_EXCLUDE_PADDING;
- param.window_h = param.window_w = 3;
- param.stride_h = param.stride_w = 1;
- param.pad_h = param.pad_w = p;
- Checker<Pooling> checker(handle());
- checker.set_param(param).exec({{2, 3, ih, iw}, {}});
- }
- // clang-format on
- }
-
- TEST_F(ARM_COMMON, POOLING_RECORD) {
- using Param = param::Pooling;
- TaskRecordChecker<Pooling> checker(0);
- // clang-format off
- for (size_t ih: {2, 3, 5, 7, 11, 13, 17})
- for (size_t iw: {2, 3, 5, 7, 11, 13, 17})
- for (size_t p: {1, 2})
- {
- Param param;
- param.mode = Param::Mode::MAX;
- param.window_h = param.window_w = 3;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = p;
- checker.set_param(param).exec({{2, 3, ih, iw}, {}});
-
- param.mode = Param::Mode::AVERAGE;
- param.window_h = param.window_w = 3;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = p;
- checker.set_param(param).exec({{2, 3, ih, iw}, {}});
-
- param.mode = Param::Mode::MAX;
- param.window_h = param.window_w = 4;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = p;
- checker.set_param(param).exec({{2, 3, ih, iw}, {}});
-
- param.mode = Param::Mode::MAX;
- param.window_h = param.window_w = 5;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = p;
- if (ih + p * 2 >= 5 && iw + p * 2 >= 5)
- checker.set_param(param).exec({{2, 3, ih, iw}, {}});
- }
- for (size_t ih: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
- for (size_t iw: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
- for (size_t p: {1, 2})
- {
- Param param;
- param.mode = Param::Mode::AVERAGE_COUNT_EXCLUDE_PADDING;
- param.window_h = param.window_w = 3;
- param.stride_h = param.stride_w = 1;
- param.pad_h = param.pad_w = p;
- Checker<Pooling> checker(handle());
- checker.set_param(param).exec({{2, 3, ih, iw}, {}});
- }
- // clang-format on
- }
-
- TEST_F(ARM_COMMON, POOLING_INT8_W2x2_S2x2) {
- // clang-format off
- for (size_t ih: {2, 3, 7, 13, 52, 53, 54, 55})
- for (size_t iw: {2, 3, 6, 14, 53, 54, 55, 56})
- for (size_t ph: {0, 1})
- for (size_t pw: {0, 1})
- if (ih+2*ph >= 3 && iw+2*pw >= 3)
- {
- Checker<Pooling> checker(handle());
- checker.set_dtype(0, dtype::Int8());
- param::Pooling param;
- param.mode = param::Pooling::Mode::MAX;
- param.pad_h = ph;
- param.pad_w = pw;
- param.stride_h = param.stride_w = 2;
- param.window_h = param.window_w = 2;
- checker.set_param(param).exec(TensorShapeArray{{2, 3, ih, iw}, {}});
- }
- // clang-format on
- }
-
- TEST_F(ARM_COMMON, POOLING_INT8_W3x3_S2x2) {
- // clang-format off
- for (size_t ih: {2, 3, 7, 13, 52, 53, 54, 55})
- for (size_t iw: {2, 3, 6, 14, 53, 54, 55, 56})
- for (size_t ph: {0, 1, 2})
- for (size_t pw: {0, 1, 2})
- if (ih+2*ph >= 3 && iw+2*pw >= 3)
- {
- Checker<Pooling> checker(handle());
- checker.set_dtype(0, dtype::Int8());
- param::Pooling param;
- param.mode = param::Pooling::Mode::MAX;
- param.pad_h = ph;
- param.pad_w = pw;
- param.stride_h = param.stride_w = 2;
- param.window_h = param.window_w = 3;
- checker.set_param(param).exec(TensorShapeArray{{2, 3, ih, iw}, {}});
- }
- // clang-format on
- }
-
- #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- TEST_F(ARM_COMMON, POOLING_FP16) {
- Checker<Pooling> checker(handle());
- checker.set_dtype(0, dtype::Float16{})
- .set_dtype(1, dtype::Float16{})
- .set_epsilon(3e-3);
-
- using Param = param::Pooling;
- for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23})
- for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23})
- for (auto mode : {Param::Mode::AVERAGE, Param::Mode::MAX}) {
- for (size_t window : {2, 3}) {
- Param param;
- param.mode = mode;
- param.window_h = param.window_w = window;
- param.stride_h = param.stride_w = 1;
- param.pad_h = param.pad_w = window / 2;
- //! test for SH == 1 && SW == 1 && FH == FW (FH == 2 || FH
- //! == 3)
- checker.set_param(param).exec({{2, 3, ih, iw}, {}});
-
- //! test for SH = SW = 2 && FH = FW = 2
- param.stride_h = param.stride_w = 2;
- checker.set_param(param).exec({{2, 3, ih, iw}, {}});
- }
- }
-
- //! test for SH == 2 && SW == 2 && FH == FW == 3 max pooling
- for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55})
- for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56})
- for (size_t ph : {0, 1, 2})
- for (size_t pw : {0, 1, 2})
- if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) {
- param::Pooling param;
- param.mode = param::Pooling::Mode::MAX;
- param.pad_h = ph;
- param.pad_w = pw;
- param.stride_h = param.stride_w = 2;
- param.window_h = param.window_w = 3;
- checker.set_param(param).exec(
- TensorShapeArray{{2, 3, ih, iw}, {}});
- }
-
- //! test for SH == 2 && SW == 2 && FH = FW = 4 max pooling
- for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
- for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
- for (size_t p : {1, 2}) {
- Param param;
- param.mode = Param::Mode::MAX;
- param.window_h = param.window_w = 4;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = p;
- checker.set_param(param).exec({{2, 3, ih, iw}, {}});
- }
-
- //! test for SH == 2 && SW == 2 && FH = FW = 5 max pooling
- for (size_t ih : {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
- for (size_t iw : {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
- for (size_t p : {1, 2}) {
- Param param;
- param.mode = Param::Mode::MAX;
- param.window_h = param.window_w = 5;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = p;
- checker.set_param(param).exec({{2, 3, ih, iw}, {}});
- }
- }
- #endif
-
- TEST_F(ARM_COMMON, POOLING_QUANTIZED) {
- Checker<Pooling> checker(handle());
- UniformIntRNG rng1{INT8_MIN >> 1, INT8_MAX >> 1};
- UniformIntRNG rng2{0, UINT8_MAX >> 1};
-
- using Param = param::Pooling;
-
- for (auto type : std::vector<DType>{
- dtype::QuantizedS8(1.1f),
- dtype::Quantized8Asymm(1.1f, static_cast<uint8_t>(3))}) {
- if (type.enumv() == DTypeEnum::QuantizedS8) {
- checker.set_rng(0, &rng1);
- } else {
- megdnn_assert(type.enumv() == DTypeEnum::Quantized8Asymm);
- checker.set_rng(0, &rng2);
- }
- for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23, 33, 49})
- for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23, 33, 49})
- for (auto mode : {Param::Mode::AVERAGE, Param::Mode::MAX}) {
- for (size_t window : {2, 3}) {
- Param param;
- param.mode = mode;
- param.window_h = param.window_w = window;
- param.stride_h = param.stride_w = 1;
- param.pad_h = param.pad_w = window / 2;
- //! test for SH == 1 && SW == 1 && FH == FW (FH == 2 ||
- //! FH
- //! == 3)
- checker.set_param(param).exec({{2, 3, ih, iw}, {}});
-
- //! test for SH = SW = 2 && FH = FW = 2
- param.stride_h = param.stride_w = 2;
- checker.set_param(param).exec({{2, 3, ih, iw}, {}});
- }
- }
-
- //! test for SH == 2 && SW == 2 && FH == FW == 3 max pooling
- for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55})
- for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56})
- for (size_t ph : {0, 1, 2})
- for (size_t pw : {0, 1, 2})
- if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) {
- param::Pooling param;
- param.mode = param::Pooling::Mode::MAX;
- param.pad_h = ph;
- param.pad_w = pw;
- param.window_h = param.window_w = 3;
- param.stride_h = param.stride_w = 2;
- checker.set_param(param).exec(
- TensorShapeArray{{2, 3, ih, iw}, {}});
- }
-
- //! test for SH == 2 && SW == 2 && FH == FW == 4 max pooling
- for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
- for (size_t iw :
- {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
- for (size_t p : {1, 2}) {
- Param param;
- param.mode = Param::Mode::MAX;
- param.window_h = param.window_w = 4;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = p;
- checker.set_param(param).exec({{2, 3, ih, iw}, {}});
- }
-
- //! test for SH == 2 && SW == 2 && FH == FW == 5 max pooling
- for (size_t ih : {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
- for (size_t iw : {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
- for (size_t p : {1, 2}) {
- Param param;
- param.mode = Param::Mode::MAX;
- param.window_h = param.window_w = 5;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = p;
- checker.set_param(param).exec({{2, 3, ih, iw}, {}});
- }
- }
- }
-
- #if MEGDNN_WITH_BENCHMARK
-
- void benchmark_nchw44_fp32(Handle* handle) {
- using Param = param::Pooling;
- auto run = [&](size_t n, size_t c, size_t h, size_t w, size_t filter, size_t stride,
- size_t pad, Param::Mode mode) {
- Param param;
- param.window_h = param.window_w = filter;
- param.stride_h = param.stride_w = stride;
- param.pad_h = param.pad_w = pad;
- param.format = Param::Format::NCHW;
- param.mode = mode;
- TensorShape nchw_shape = {n, c, h, w};
- TensorShape nchw44_shape = {n, c / 4, h, w, 4};
- TensorLayout dst_layout;
- auto opr = handle->create_operator<Pooling>();
- opr->param() = param;
- opr->deduce_layout({nchw_shape, dtype::Float32()}, dst_layout);
- float calc_amount =
- dst_layout.total_nr_elems() * param.window_h * param.window_w;
-
- Benchmarker<Pooling> benchmarker_float_nchw(handle);
- Benchmarker<Pooling> benchmarker_float_nchw44(handle);
- Benchmarker<Pooling> benchmarker_int_nchw44(handle);
- size_t RUN = 500;
- auto t1 = benchmarker_float_nchw.set_display(false)
- .set_times(RUN)
- .set_param(param)
- .exec({nchw_shape, {}});
-
- param.format = Param::Format::NCHW44;
- auto t2 = benchmarker_int_nchw44.set_display(false)
- .set_times(RUN)
- .set_param(param)
- .execl({{nchw44_shape, dtype::QuantizedS8(1.0)},
- {{}, dtype::QuantizedS8(1.0)}});
- auto t3 = benchmarker_float_nchw44.set_display(false)
- .set_times(RUN)
- .set_param(param)
- .exec({nchw44_shape, {}});
-
- printf("{%zu %zu %zu %zu} filter = %zu, stride = %zu pad = %zu\n"
- "nchw_fp32={%.3f ms, %.3f Mflops}, "
- "nchw44_int={%.3f ms, %.3f Mflops}, "
- "nchw44_fp32={%.3f ms, %.3f Mflops, speed_up %f}\n\n",
- n, c, h, w, filter, stride, pad, t1 / RUN,
- calc_amount / (t1 / RUN * 1000), t2 / RUN,
- calc_amount / (t2 / RUN * 1000), t3 / RUN,
- calc_amount / (t3 / RUN * 1000), t1 / t3);
- };
- // Resnet50
- run(1, 64, 112, 112, 3, 2, 1, param::Pooling::Mode::MAX);
- run(1, 2048, 7, 7, 7, 1, 0, param::Pooling::Mode::AVERAGE);
-
- // VGG16
- run(1, 64, 224, 224, 2, 2, 0, param::Pooling::Mode::MAX);
- run(1, 128, 112, 112, 2, 2, 0, param::Pooling::Mode::MAX);
- run(1, 256, 56, 56, 2, 2, 0, param::Pooling::Mode::MAX);
- run(1, 512, 28, 28, 2, 2, 0, param::Pooling::Mode::MAX);
- run(1, 512, 14, 14, 2, 2, 0, param::Pooling::Mode::MAX);
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_POOLING_NCHW44_FP32) {
- benchmark_nchw44_fp32(handle());
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, BENCHMARK_POOLING_NCHW44_FP32) {
- benchmark_nchw44_fp32(handle());
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_POOLING_INT8_W3x3_S2x2) {
- using Param = param::Pooling;
- auto run = [&](const TensorShapeArray& shapes, Param param) {
- auto handle_naive = create_cpu_handle(2);
- TensorLayoutArray layouts;
- layouts.emplace_back(shapes[0], dtype::Int8());
- layouts.emplace_back(shapes[1], dtype::Int8());
- Benchmarker<Pooling> benchmarker_naive(handle_naive.get());
- Benchmarker<Pooling> benchmarker_float(handle());
- Benchmarker<Pooling> benchmarker_int(handle());
- size_t RUN = 10;
- auto t1 = benchmarker_naive.set_display(false)
- .set_times(RUN)
- .set_param(param)
- .exec(shapes);
- auto t2 = benchmarker_float.set_display(false)
- .set_times(RUN)
- .set_param(param)
- .exec(shapes);
- auto t3 = benchmarker_int.set_display(false)
- .set_times(RUN)
- .set_param(param)
- .execl(layouts);
- printf("naive=%.3fms float=%.3fms, int=%.3fms\n", t1 / RUN, t2 / RUN, t3 / RUN);
- auto speedup = t2 / t3;
- ASSERT_GE(speedup, 2.0);
- };
- Param param;
- param.window_h = param.window_w = 3;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = 1;
- std::cout << "3x3 with 2x2 stride max pooling:" << std::endl;
- run({{1, 3, 640, 480}, {}}, param);
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_POOLING_W4x4_S2x2) {
- using Param = param::Pooling;
- auto run = [&](const TensorShapeArray& shapes, Param param) {
- std::cout << "N:" << shapes[0][0] << " "
- << "IC:" << shapes[0][1] << " "
- << "IH:" << shapes[0][2] << " "
- << "IW:" << shapes[0][3] << std::endl;
- auto handle_naive = create_cpu_handle(2);
- Benchmarker<Pooling> benchmarker_naive(handle_naive.get());
- Benchmarker<Pooling> benchmarker_float(handle());
- size_t RUN = 10;
- auto t1 = benchmarker_naive.set_display(false)
- .set_times(RUN)
- .set_param(param)
- .exec(shapes);
- auto t2 = benchmarker_float.set_display(false)
- .set_times(RUN)
- .set_param(param)
- .exec(shapes);
- TensorLayout dst_layout;
- auto opr = handle()->create_operator<Pooling>();
- opr->param() = param;
- opr->deduce_layout({shapes[0], dtype::Float32()}, dst_layout);
- float calc_amount =
- dst_layout.total_nr_elems() * param.window_h * param.window_w;
- printf("naive={%.3fms, %.3fMflops}, neon={%.3fms, %.3fMflops}\n", t1 / RUN,
- calc_amount / (t1 / RUN * 1000), t2 / RUN,
- calc_amount / (t2 / RUN * 1000));
- };
- Param param;
- param.window_h = param.window_w = 4;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = 1;
- std::cout << "4x4 with 2x2 stride max pooling:" << std::endl;
- run({{1, 24, 160, 128}, {}}, param);
- run({{1, 4, 240, 135}, {}}, param);
- run({{1, 32, 120, 67}, {}}, param);
- run({{1, 64, 60, 33}, {}}, param);
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_POOLING_W5x5_S2x2) {
- using Param = param::Pooling;
- auto run = [&](const TensorShapeArray& shapes, Param param) {
- std::cout << "N:" << shapes[0][0] << " "
- << "IC:" << shapes[0][1] << " "
- << "IH:" << shapes[0][2] << " "
- << "IW:" << shapes[0][3] << std::endl;
- auto handle_naive = create_cpu_handle(2);
- Benchmarker<Pooling> benchmarker_naive(handle_naive.get());
- Benchmarker<Pooling> benchmarker_float(handle());
- size_t RUN = 10;
- auto t1 = benchmarker_naive.set_display(false)
- .set_times(RUN)
- .set_param(param)
- .exec(shapes);
- auto t2 = benchmarker_float.set_display(false)
- .set_times(RUN)
- .set_param(param)
- .exec(shapes);
- TensorLayout dst_layout;
- auto opr = handle()->create_operator<Pooling>();
- opr->param() = param;
- opr->deduce_layout({shapes[0], dtype::Float32()}, dst_layout);
- float calc_amount =
- dst_layout.total_nr_elems() * param.window_h * param.window_w;
- printf("naive={%.3fms, %.3fMflops}, neon={%.3fms, %.3fMflops}\n", t1 / RUN,
- calc_amount / (t1 / RUN * 1000), t2 / RUN,
- calc_amount / (t2 / RUN * 1000));
- };
- Param param;
- param.window_h = param.window_w = 5;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = 1;
- std::cout << "5x5 with 2x2 stride max pooling:" << std::endl;
- run({{1, 24, 160, 128}, {}}, param);
- run({{1, 4, 240, 135}, {}}, param);
- run({{1, 32, 120, 67}, {}}, param);
- run({{1, 64, 60, 33}, {}}, param);
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_POOLING_FP16) {
- using Param = param::Pooling;
- auto run = [&](const TensorShapeArray& shapes, Param param) {
- TensorLayoutArray layouts;
- layouts.emplace_back(shapes[0], dtype::Float16());
- layouts.emplace_back(shapes[1], dtype::Float16());
- Benchmarker<Pooling> benchmarker_float(handle());
- Benchmarker<Pooling> benchmarker_half(handle());
- size_t RUN = 10;
- auto tf = benchmarker_float.set_display(false)
- .set_times(RUN)
- .set_param(param)
- .exec(shapes) /
- RUN;
- auto th = benchmarker_half.set_display(false)
- .set_times(RUN)
- .set_param(param)
- .execl(layouts) /
- RUN;
- TensorLayout dst_layout;
- auto opr = handle()->create_operator<Pooling>();
- opr->param() = param;
- opr->deduce_layout({shapes[0], dtype::Float32()}, dst_layout);
-
- float computations = dst_layout.total_nr_elems() * param.window_h *
- param.window_w / (1024.f * 1024 * 1024);
- printf("float=%.3fms %f gflops, float16=%.3fms %f gflops speedup: %f\n", tf,
- computations / tf * 1e3, th, computations / th * 1e3, tf / th);
- };
- Param param;
- param.window_h = param.window_w = 2;
- param.stride_h = param.stride_w = 1;
- param.pad_h = param.pad_w = 1;
- printf("2x2 with 1x1 stride max pooling:\n");
- run({{1, 3, 640, 480}, {}}, param);
-
- for (size_t oh : {640, 128})
- for (size_t ow : {480, 112}) {
- param.window_h = param.window_w = 3;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = 1;
- param.mode = Param::Mode::AVERAGE;
- printf("3x3 with 2x2 stride average pooling.\n");
- run({{1, 3, oh, ow}, {}}, param);
-
- for (size_t pw : {2, 3, 4, 5}) {
- param.window_h = param.window_w = pw;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = 1;
- param.mode = Param::Mode::MAX;
- printf("%zux%zu with 2x2 stride max pooling:\n", pw, pw);
- run({{1, 3, oh, ow}, {}}, param);
- }
- }
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_POOLING_QUANTIZED) {
- using Param = param::Pooling;
- auto run = [&](const TensorShapeArray& shapes, Param param) {
- auto handle_naive = create_cpu_handle(2);
- TensorLayoutArray layouts;
- layouts.emplace_back(shapes[0], dtype::QuantizedS8(1.1f));
- layouts.emplace_back(shapes[1], dtype::QuantizedS8(1.1f));
- Benchmarker<Pooling> benchmarker_int(handle());
- Benchmarker<Pooling> benchmarker_naive(handle_naive.get());
- size_t RUN = 10;
- auto time_int =
- benchmarker_int.set_display(false).set_times(RUN).set_param(param).exec(
- shapes) /
- RUN;
- auto time_naive = benchmarker_naive.set_display(false)
- .set_times(RUN)
- .set_param(param)
- .execl(layouts) /
- RUN;
- TensorLayout dst_layout;
- auto opr = handle()->create_operator<Pooling>();
- opr->param() = param;
- opr->deduce_layout({shapes[0], dtype::QuantizedS8(1.1f)}, dst_layout);
-
- float computations = dst_layout.total_nr_elems() * param.window_h *
- param.window_w / (1024.f * 1024 * 1024);
- printf("naive=%.3fms %f gflops, int8=%.3fms %f gflops speedup: %f\n",
- time_naive, computations / time_naive * 1e3, time_int,
- computations / time_int * 1e3, time_naive / time_int);
- };
- Param param;
- param.window_h = param.window_w = 2;
- param.stride_h = param.stride_w = 1;
- param.pad_h = param.pad_w = 1;
- printf("2x2 with 1x1 stride max pooling:\n");
- run({{1, 3, 640, 480}, {}}, param);
-
- // clang-format off
- for (size_t oh : {640, 128})
- for (size_t ow : {480, 112})
- for (size_t pw : {2, 3, 4, 5}) {
- param.window_h = param.window_w = pw;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = 1;
- printf("%zux%zu with 2x2 stride max pooling:\n", pw, pw);
- run({{1, 3, oh, ow}, {}}, param);
- }
- // clang-format on
- }
- #endif
-
- } // namespace test
- } // namespace megdnn
- // vim: syntax=cpp.doxygen
|