|
- # -*- coding: utf-8 -*-
- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- #
- # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- from typing import Iterable, Tuple, Union
-
- from ..core import Buffer, Parameter
- from .internal import add_update_fastpath as add_update
- from .optimizer import Optimizer
-
-
- class Adam(Optimizer):
- r"""Implements Adam algorithm.
-
- :param params: iterable of parameters to optimize or dicts defining
- parameter groups.
- :param lr: learning rate.
- :param betas: coefficients used for computing running averages of gradient
- and its square. Default: (0.9, 0.999)
- :param eps: term added to the denominator to improve numerical stability
- Default: 1e-8
- :param weight_decay: weight decay (L2 penalty). Default: 0
- """
-
- def __init__(
- self,
- params: Union[Iterable[Parameter], dict],
- lr: float,
- betas: Tuple[float, float] = (0.9, 0.999),
- eps: float = 1e-8,
- weight_decay: float = 0.0,
- ):
- if lr < 0.0:
- raise ValueError("Invalid learning rate: {}".format(lr))
- if weight_decay < 0.0:
- raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
- if not 0.0 <= betas[0] < 1.0:
- raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
- if not 0.0 <= betas[1] < 1.0:
- raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
-
- defaults = dict(lr=lr, weight_decay=weight_decay, betas=betas, eps=eps)
- super().__init__(params, defaults)
-
- def _create_state(self, param_group):
- for param in param_group["params"]:
- self._add_state(param, "exp_avg")
- self._add_state(param, "exp_avg_sq")
- self._add_state(param, "step", initializer=0.0)
-
- def _updates(self, param_group):
- lr = param_group["lr"]
- weight_decay = param_group["weight_decay"]
- eps = param_group["eps"]
- beta0, beta1 = param_group["betas"]
-
- for param in param_group["params"]:
- if not param.requires_grad:
- continue
-
- step = self._state[param]["step"]
- step = add_update(step, 1)
- if not isinstance(param.grad, Buffer):
- raise TypeError(
- "grad must be a Buffer, maybe you forget to call backward()?"
- )
- grad = param.grad
- if weight_decay != 0.0:
- grad = add_update(grad, param, beta=weight_decay)
- exp_avg = self._state[param]["exp_avg"]
- exp_avg_sq = self._state[param]["exp_avg_sq"]
- exp_avg = add_update(exp_avg, grad, alpha=beta0, beta=1 - beta0)
- exp_avg_sq = add_update(
- exp_avg_sq, grad * grad, alpha=beta1, beta=1 - beta1
- )
- add_update(
- param,
- exp_avg
- / (1 - beta0 ** step)
- / (exp_avg_sq.sqrt() / (1 - beta1 ** step).sqrt() + eps),
- beta=-lr,
- )
|