|
- from typing import Iterable, Union
-
- import numpy as np
-
- from ..core import Buffer, Parameter
- from ..functional import sqrt
- from .internal import add_update_fastpath as add_update
- from .optimizer import Optimizer
-
-
- class Adagrad(Optimizer):
- r"""Implements Adagrad algorithm.
-
- It has been proposed in `"Adaptive Subgradient Methods for Online Learning
- and Stochastic Optimization" <http://jmlr.org/papers/v12/duchi11a.html>`_.
-
- :param params: iterable of parameters to optimize or dicts defining
- parameter groups.
- :param lr: coefficient that scale delta before it is applied
- to the parameters (default: 1e-2).
- :param lr_decay: learning rate decay (default: 0)
- :param eps: term added to the denominator to improve
- numerical stability (default: 1e-10).
- :param weight_decay: weight decay (L2 penalty) (default: 0).
- """
-
- def __init__(
- self,
- params: Union[Iterable[Parameter], dict],
- lr: float = 1e-2,
- lr_decay: float = 0.0,
- eps: float = 1e-10,
- weight_decay: float = 0.0,
- ):
- assert lr >= 0.0, "Invalid learning rate: {}".format(lr)
- assert lr_decay >= 0, "Invalid learning rate decay: {}".format(lr_decay)
- assert eps >= 0.0, "Invalid epsilon value: {}".format(eps)
- assert weight_decay >= 0.0, "Invalid weight_decay value: {}".format(
- weight_decay
- )
-
- defaults = dict(lr=lr, lr_decay=lr_decay, eps=eps, weight_decay=weight_decay)
- super().__init__(params, defaults)
-
- def _create_state(self, param_group):
- for param in param_group["params"]:
- self._add_state(param, "square_avg")
- self._add_state(param, "step", initializer=0.0)
-
- def _updates(self, param_group):
- lr = param_group["lr"]
- lr_decay = param_group["lr_decay"]
- weight_decay = param_group["weight_decay"]
- eps = param_group["eps"]
-
- for param in param_group["params"]:
- if not isinstance(param.grad, Buffer):
- raise TypeError(
- "grad must be a Buffer, maybe you forget to call backward()?"
- )
-
- if not param.requires_grad:
- continue
-
- step = self._state[param]["step"]
- step = add_update(step, 1)
- grad = param.grad
- if weight_decay != 0.0:
- grad = add_update(grad, param, beta=weight_decay)
-
- square_avg = self._state[param]["square_avg"]
- square_avg = add_update(square_avg, grad ** 2)
- delta = grad / sqrt(square_avg + eps)
- clr = lr / (1 + (step - 1) * lr_decay)
- add_update(param, delta, beta=-clr)
|