|
- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- #
- # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- from ... import _internal as mgb
- from ...core import Tensor, wrap_io_tensor
- from ...core.graph import _use_default_if_none
- from ..qat import elemwise as QAT
- from .module import QuantizedModule
-
-
- @wrap_io_tensor
- def _elemwise_multi_type(mode, *inputs, **kwargs) -> Tensor:
- if all(isinstance(i, (int, float)) for i in inputs):
- device, comp_graph = _use_default_if_none(None, None)
- ret = mgb.opr.elemwise_multi_type(
- *inputs, mode=mode, comp_node=device, comp_graph=comp_graph, **kwargs,
- )
- return ret.inferred_value[0]
- return mgb.opr.elemwise_multi_type(*inputs, mode=mode, **kwargs)
-
-
- class Elemwise(QuantizedModule):
- r"""quantized version of :class:`~.qat.elemwise.Elemwise`."""
-
- _elemwise_multi_type_mode = mgb.opr_param_defs.ElemwiseMultiType.Mode
-
- def __init__(self, method, dtype=None):
- super().__init__()
- self.method = self._elemwise_multi_type_mode.convert("Q" + method)
- self.output_dtype = dtype
-
- def forward(self, *inps):
- if self.training:
- raise ValueError("quantized module only support inference.")
- return _elemwise_multi_type(self.method, *inps, dtype=self.output_dtype)
-
- @classmethod
- def from_qat_module(cls, qat_module: QAT.Elemwise):
- r"""
- return a :class:`~.QuantizedModule` instance converted from a
- :class:`~.QATModule` instance.
- """
- return cls(qat_module.method.name, qat_module.get_activation_dtype())
|