|
- /**
- * \file src/opr/impl/search_policy/algo_chooser.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
- * implied.
- */
-
- #include "megbrain/opr/search_policy/algo_chooser.h"
- #include <limits>
- #include <unordered_set>
- #include "megbrain/opr/dnn/convolution.h"
- #include "megbrain/opr/internal/megdnn_opr_wrapper.h"
- #include "megbrain/opr/search_policy/algo_chooser_helper.h"
- #include "megbrain/opr/search_policy/profiler.h"
-
- #include "../internal/invoke.h"
- #include "../internal/megdnn_opr_wrapper.inl"
- #include "./workspace_need_limit_getter.inl"
-
- //! TODO: here has to be know some megdnn::opr when there is produced midout.h
- //! fix it if there is another graceful way.
- #include "megdnn/opr_param_defs.h"
- #include "megdnn/oprs.h"
- #include "megdnn/oprs/base.h"
- #include "midout.h"
- MIDOUT_DECL(megbrain_opr_algo_chooser)
- #define MIDOUT_B(...) MIDOUT_BEGIN(megbrain_opr_algo_chooser, __VA_ARGS__) {
- #define MIDOUT_E \
- } \
- MIDOUT_END();
-
- using mgb::opr::intl::WorkspaceLimitGetter;
- using namespace megdnn;
- using namespace mgb;
-
- #define APPLY(statement, ...) \
- mgb::apply([&](const auto&... args) { return statement; }, \
- std::tuple_cat(__VA_ARGS__))
-
- // timeout delta to be added with fastest known algorithm for new algos
- constexpr double TIMEOUT_TOLERANCE = 2;
-
- #define CACHE_KEY_VERSION "v5"
-
- namespace {
- template <typename Opr>
- std::string profile_name(Opr* opr) {
- std::string ret =
- std::string(MegDNNOpr2MGBOpr<Opr>::MGBOpr::typeinfo()->name) +
- CACHE_KEY_VERSION;
- ret.append(opr->get_algorithm_set_name());
- return ret;
- }
-
- template <typename Opr>
- std::string format_fixlayouts(
- const typename opr::AlgoChooser<Opr>::FixedTensorLayouts& layouts,
- size_t arity_in, size_t arity_out) {
- std::string ret;
- ret.append(": tensor layouts(");
- for (size_t i = 0; i < arity_in; ++i) {
- if (i) {
- ret.append(", ");
- }
- ret.append(layouts[i].to_string() + " ");
- }
- ret.append(") -> (");
- for (size_t i = 0; i < arity_out; ++i) {
- if (i) {
- ret.append(", ");
- }
- ret.append(layouts[i + arity_in].to_string() + " ");
- }
- return ret;
- }
-
- /**
- * \brief Check if the sub opr list has circular dependence.
- */
- class CircularDepsChecker {
- struct SearchItemStorage {
- std::string data_hold;
- size_t hash = 0;
-
- SearchItemStorage(const Algorithm::SearchItem& item) {
- Algorithm::serialize_write_pod(item.opr_type, data_hold);
- for (auto&& layout : item.layouts) {
- data_hold += layout.serialize();
- }
- data_hold += item.param;
- }
-
- SearchItemStorage& init_hash() {
- hash = XXHash64CT::hash(data_hold.data(), data_hold.size(),
- 20201225);
- return *this;
- }
-
- bool operator==(const SearchItemStorage& rhs) const {
- return data_hold == rhs.data_hold;
- }
-
- struct Hash {
- size_t operator()(const SearchItemStorage& s) const {
- return s.hash;
- }
- };
- };
- std::unordered_set<SearchItemStorage, SearchItemStorage::Hash> m_set;
-
- public:
- void put(const megdnn::Algorithm::SearchItem& key) {
- SearchItemStorage key_storage(key);
- key_storage.init_hash();
- mgb_assert(m_set.find(key_storage) == m_set.end(),
- "Circular dependency during flatten search space");
- auto ret = m_set.insert(std::move(key_storage));
- mgb_assert(ret.second);
- }
- void remove(const megdnn::Algorithm::SearchItem& key) {
- SearchItemStorage key_storage(key);
- key_storage.init_hash();
- auto&& iter = m_set.find(key_storage);
- mgb_assert(iter != m_set.end());
- m_set.erase(iter);
- }
- };
-
- ///////////////// OprTypeTrait /////////////////////////////
- template <megdnn::Algorithm::OprType>
- struct OprFromOprTypeTrait;
-
- template <typename Opr>
- struct OprTypeFromOprTrait;
-
- #define cb(_opr_type, _opr) \
- template <> \
- struct OprFromOprTypeTrait<megdnn::Algorithm::OprType::_opr_type> { \
- using Opr = megdnn::_opr; \
- }; \
- template <> \
- struct OprTypeFromOprTrait<megdnn::_opr> { \
- constexpr static megdnn::Algorithm::OprType opr_type = \
- megdnn::Algorithm::OprType::_opr_type; \
- }
-
- cb(MATRIX_MUL_FORWARD, MatrixMulForward);
- cb(BATCHED_MATRIX_MUL_FORWARD, BatchedMatrixMulForward);
- cb(CONVOLUTION_FORWARD, ConvolutionForward);
- cb(CONVOLUTION_BACKWARD_DATA, ConvolutionBackwardData);
- cb(CONVOLUTION_BACKWARD_FILTER, ConvolutionBackwardFilter);
- cb(CONVOLUTION3D_FORWARD, Convolution3DForward);
- cb(CONVOLUTION3D_BACKWARD_DATA, Convolution3DBackwardData);
- cb(CONVOLUTION3D_BACKWARD_FILTER, Convolution3DBackwardFilter);
- cb(LOCAL_SHARE_FORWARD, LocalShareForward);
- cb(LOCAL_SHARE_BACKWARD_DATA, LocalShareBackwardData);
- cb(LOCAL_SHARE_BACKWARD_FILTER, LocalShareBackwardFilter);
- cb(DEFORMABLE_CONV_FORWARD, DeformableConvForward);
- cb(DEFORMABLE_CONV_BACKWARD_DATA, DeformableConvBackwardData);
- cb(DEFORMABLE_CONV_BACKWARD_FILTER, DeformableConvBackwardFilter);
- cb(BATCH_CONV_FORWARD, BatchConvBiasForward);
- cb(CONVBIAS_FORWARD, ConvBiasForward);
-
- #undef cb
-
- // clang-format off
- #define FOREACH_OPR_TYPE_WITH_STMT(cb, stmt) \
- cb(MATRIX_MUL_FORWARD, stmt) \
- cb(BATCHED_MATRIX_MUL_FORWARD, stmt) \
- cb(CONVOLUTION_FORWARD, stmt) \
- cb(CONVOLUTION_BACKWARD_DATA, stmt) \
- cb(CONVOLUTION_BACKWARD_FILTER, stmt) \
- cb(CONVOLUTION3D_FORWARD, stmt) \
- cb(CONVOLUTION3D_BACKWARD_DATA, stmt) \
- cb(CONVOLUTION3D_BACKWARD_FILTER, stmt) \
- cb(LOCAL_SHARE_FORWARD, stmt) \
- cb(LOCAL_SHARE_BACKWARD_DATA, stmt) \
- cb(LOCAL_SHARE_BACKWARD_FILTER, stmt) \
- cb(DEFORMABLE_CONV_FORWARD, stmt) \
- cb(DEFORMABLE_CONV_BACKWARD_DATA, stmt) \
- cb(DEFORMABLE_CONV_BACKWARD_FILTER, stmt) \
- cb(BATCH_CONV_FORWARD, stmt) \
- cb(CONVBIAS_FORWARD, stmt)
- // clang-format on
-
- #define _OPR_TYPE_CASE(_opr_type, _stmt) \
- case Algorithm::OprType::_opr_type: { \
- using _Opr = typename OprFromOprTypeTrait< \
- Algorithm::OprType::_opr_type>::Opr; \
- _stmt; \
- break; \
- }
-
- #define FOREACH_OPR_TYPE_DISPATCH(_search_items, _stmt) \
- for (size_t _item_idx = 0; _item_idx < _search_items.size(); \
- _item_idx++) { \
- auto&& _item = _search_items[_item_idx]; \
- switch (_item.opr_type) { \
- FOREACH_OPR_TYPE_WITH_STMT(_OPR_TYPE_CASE, _stmt) \
- default: \
- mgb_throw(MegBrainError, "unknown opr_type"); \
- } \
- }
-
- template <typename Opr>
- TensorLayoutArray to_layout_array(
- const typename opr::AlgoChooser<Opr>::FixedTensorLayouts& layouts) {
- TensorLayoutArray ret;
- for (auto&& layout : layouts) {
- ret.push_back(layout);
- }
- return ret;
- }
-
- template <typename Opr>
- typename opr::AlgoChooser<Opr>::FixedTensorLayouts to_fixed_layouts(
- const TensorLayoutArray& layouts) {
- typename opr::AlgoChooser<Opr>::FixedTensorLayouts ret;
- mgb_assert(ret.size() == layouts.size());
- size_t idx = 0;
- for (auto&& layout : layouts) {
- ret[idx++] = layout;
- }
- return ret;
- }
-
- /**
- * flatten search space in postorder traversal
- * The subopr search construct a search tree
- *
- * A
- * / \
- * B1B2 C
- * / \
- * D1D2D3 E
- * We use postorder traverse the search tree.
- * D1 -> D2 -> D3 -> E -> B1 -> B2 -> C -> A
- */
- template <typename Opr>
- std::vector<megdnn::Algorithm::SearchItem> flatten_search_space(
- const typename opr::AlgoChooser<Opr>::AlgoChooserHelper& helper,
- CircularDepsChecker& checker) {
- auto&& search_item = megdnn::Algorithm::SearchItem{
- OprTypeFromOprTrait<Opr>::opr_type, helper.param(),
- to_layout_array<Opr>(helper.layouts())};
- checker.put(search_item);
- std::vector<megdnn::Algorithm::SearchItem> ret;
- for (auto algo_info : helper.get_all_candidates()) {
- megdnn::Algorithm* algo =
- helper.get_algorithm_from_desc(algo_info.desc);
- mgb_assert(algo, "Unknown algo description");
- std::vector<megdnn::Algorithm::SearchItem>&& sub_items =
- algo->get_subopr_list(to_layout_array<Opr>(helper.layouts()),
- helper.megdnn_opr());
-
- FOREACH_OPR_TYPE_DISPATCH(sub_items, {
- auto&& megdnn_opr =
- opr::intl::create_megdnn_opr<_Opr>(helper.comp_node());
- megdnn_opr->param() =
- Algorithm::deserialize_read_pod<typename _Opr::Param>(
- _item.param);
- typename opr::AlgoChooser<_Opr>::AlgoChooserHelper sub_helper(
- to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(),
- _item.param, helper.mgb_opr(), helper.comp_node(),
- helper.execution_policy(),
- helper.allow_weight_preprocess());
- auto space = flatten_search_space<_Opr>(sub_helper, checker);
- ret.insert(ret.end(), space.begin(), space.end());
- });
- }
- ret.push_back(search_item);
- checker.remove(search_item);
- return ret;
- }
-
- //! serialize a algo's desc to string. format is
- //! handle_type|algo_type|size_of_param|size_of_name|string_of_param|string_of_name
- static void serialize_write_pod(const Algorithm::Info::Desc& val,
- std::string& result) {
- megdnn::Algorithm::serialize_write_pod(val.handle_type, result);
- megdnn::Algorithm::serialize_write_pod(val.type, result);
- uint32_t param_size = val.param.size();
- uint32_t name_size = val.name.size();
- megdnn::Algorithm::serialize_write_pod<uint32_t>(param_size, result);
- megdnn::Algorithm::serialize_write_pod<uint32_t>(name_size, result);
- result += val.param;
- result += val.name;
- }
-
- static Algorithm::Info::Desc deserialize_read_pod(const std::string& data,
- size_t offset = 0) {
- Algorithm::Info::Desc ret;
- #define cb(_val, _type) \
- _val = megdnn::Algorithm::deserialize_read_pod<_type>(data.data(), \
- offset); \
- offset += sizeof(_val)
-
- cb(ret.handle_type, megdnn::Handle::HandleType);
- cb(ret.type, uint32_t);
-
- uint32_t param_size = 0;
- uint32_t name_size = 0;
- cb(param_size, uint32_t);
- cb(name_size, uint32_t);
-
- if (param_size > 0) {
- ret.param = std::string(data.data() + offset, param_size);
- offset += param_size;
- }
- if (name_size > 0) {
- ret.name = std::string(data.data() + offset, name_size);
- offset += name_size;
- }
- return ret;
- }
-
- } // namespace
-
- namespace mgb {
- namespace opr {
- ///////////////////////////// AlgoChooserHelper //////////////////////////
- template <typename Opr>
- AlgoChooser<Opr>::AlgoChooserHelper::AlgoChooserHelper(
- const FixedTensorLayouts& layouts, Opr* megdnn_opr,
- const std::string& param_str, const cg::OperatorNodeBase* mgb_opr,
- const CompNode& cn,
- const megdnn::param::ExecutionPolicy& execution_policy,
- bool allow_weight_preprocess)
- : m_layouts{layouts},
- m_dnn_opr{megdnn_opr},
- m_param{param_str},
- m_base_mgb_opr{mgb_opr},
- m_cn{cn},
- m_execution_policy{execution_policy},
- m_allow_weight_preprocess{allow_weight_preprocess} {
- mgb_assert(m_layouts.size() == layouts.size());
- static_assert(std::tuple_size<FixedTensorLayouts>::value == 3 ||
- std::tuple_size<FixedTensorLayouts>::value == 5 ||
- std::tuple_size<FixedTensorLayouts>::value == 8,
- "Convolution AlgoChooser assumes arity = 3 , 5 or 8 (for "
- "deformable conv)");
- }
-
- template <typename Opr>
- typename AlgoChooser<Opr>::ImplExecutionPolicy
- AlgoChooser<Opr>::AlgoChooserHelper::choose_by_heuristic(
- const ExecutionStrategy& selected_strategy) const {
- MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("choose_by_heuristic")))
- ImplExecutionPolicy policy;
- auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit(
- owner_graph(), m_cn, m_execution_policy.workspace_limit);
- auto attr = extract_algo_attribute(selected_strategy);
- policy.algo =
- APPLY(m_dnn_opr->get_algorithm_info_heuristic(
- args..., workspace_limit, attr.first, attr.second),
- m_layouts)
- .desc;
-
- Algorithm* algo = m_dnn_opr->get_algorithm_from_desc(policy.algo);
- mgb_assert(algo, "Unknown algo description");
- std::vector<Algorithm::SearchItem>&& sub_items = algo->get_subopr_list(
- to_layout_array<Opr>(m_layouts), m_dnn_opr);
-
- FOREACH_OPR_TYPE_DISPATCH(sub_items, {
- auto&& megdnn_opr = intl::create_megdnn_opr<_Opr>(m_cn);
- megdnn_opr->param() =
- Algorithm::deserialize_read_pod<typename _Opr::Param>(
- _item.param);
- typename AlgoChooser<_Opr>::AlgoChooserHelper sub_helper(
- to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(),
- _item.param, m_base_mgb_opr, m_cn, m_execution_policy,
- m_allow_weight_preprocess);
- policy.sub_policy.push_back(
- sub_helper.choose_by_heuristic(selected_strategy));
- });
-
- return policy;
- MIDOUT_E
- }
-
- template <typename Opr>
- typename AlgoChooser<Opr>::ImplExecutionPolicy
- AlgoChooser<Opr>::AlgoChooserHelper::choose_by_profile(
- const ExecutionStrategy& selected_strategy, bool enable_update) const {
- MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("choose_by_profile")))
- if (owner_graph()->options().no_profiling_on_shape_change) {
- auto policy = m_dnn_opr->execution_policy();
- if (policy.algo.valid()) {
- return policy;
- }
- if (!algo_usable_on_shape_change<Opr>()) {
- mgb_log_warn(
- "choose algo by heuristic, which may cause performance "
- "regression.");
- return choose_by_heuristic(selected_strategy);
- }
- }
-
- typename AlgoChooser<Opr>::ImplExecutionPolicy tmp_policy;
- bool retrive_from_cache = true;
- bool allow_log = false;
- construct_execution_policy(selected_strategy, tmp_policy,
- retrive_from_cache, allow_log);
- if (tmp_policy.algo.valid()) {
- // return policy when contruct successed
- return tmp_policy;
- }
-
- if (enable_update) {
- CircularDepsChecker circular_deps_checker;
- auto&& search_items =
- flatten_search_space<Opr>(*this, circular_deps_checker);
- FOREACH_OPR_TYPE_DISPATCH(search_items, {
- auto&& megdnn_opr = intl::create_megdnn_opr<_Opr>(m_cn);
- megdnn_opr->param() =
- Algorithm::deserialize_read_pod<typename _Opr::Param>(
- _item.param);
- typename AlgoChooser<_Opr>::AlgoChooserHelper sub_helper(
- to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(),
- _item.param, m_base_mgb_opr, m_cn, m_execution_policy,
- m_allow_weight_preprocess);
- sub_helper.profile(selected_strategy);
- });
- }
-
- typename AlgoChooser<Opr>::ImplExecutionPolicy policy;
- construct_execution_policy(selected_strategy, policy);
- return policy;
- MIDOUT_E
- }
-
- template <typename Opr>
- typename AlgoChooser<Opr>::ImplAlgoDesc
- AlgoChooser<Opr>::AlgoChooserHelper::get_profile_result_from_cache(
- const ExecutionStrategy& selected_strategy) const {
- MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("get_profile_result_from_cache")))
- AlgoChooserProfileCache cache(m_cn, profile_name(m_dnn_opr).c_str());
-
- typename Opr::Param origin_param = m_dnn_opr->param();
- AlgoChooserProfileCache::Key cache_key{m_layouts.data(), m_layouts.size(),
- &origin_param, sizeof(origin_param)};
- auto&& rst = cache.get(cache_key);
- if (!rst.valid())
- return {};
-
- auto&& prof = rst.val();
- if (prof.empty())
- return {};
-
- auto target_attr = extract_algo_attribute(selected_strategy);
- bool skip_by_negative = false;
- for (auto&& i : prof) {
- auto attr_of_algo =
- static_cast<megdnn::Algorithm::Attribute>(i.attribute);
- bool contain_attr_all_positive =
- (target_attr.first == (attr_of_algo & target_attr.first));
- bool contain_attr_any_negative =
- static_cast<bool>(attr_of_algo & target_attr.second);
- if (contain_attr_all_positive) {
- if (!contain_attr_any_negative) {
- Algorithm::Info::Desc algo_desc = deserialize_read_pod(i.algo);
- return algo_desc;
- } else {
- skip_by_negative = true;
- }
- }
- }
-
- if (skip_by_negative) {
- mgb_log_error(
- "No usable algo. There are available algos match positive "
- "strategy(%s), but filtered by negative stategy(%s).",
- Algorithm::attribute_str(target_attr.first).c_str(),
- Algorithm::attribute_str(target_attr.second).c_str());
- } else {
- mgb_log_error(
- "No usable algo. algos read from cache could not satisfy "
- "positive strategy(%s)",
- Algorithm::attribute_str(target_attr.first).c_str());
- }
-
- mgb_trap();
- MIDOUT_E
- }
-
- template <typename Opr>
- void AlgoChooser<Opr>::AlgoChooserHelper::construct_execution_policy(
- const ExecutionStrategy& selected_strategy,
- typename AlgoChooser<Opr>::ImplExecutionPolicy& policy,
- bool retrive_from_cache, bool allow_log) const {
- MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("construct_execution_policy")))
- if (!policy.algo.valid()) {
- if (retrive_from_cache) {
- policy.algo = get_profile_result_from_cache(selected_strategy);
- if (!policy.algo.valid()) {
- if (allow_log) {
- auto target_attr =
- extract_algo_attribute(selected_strategy);
- std::string layouts_str = format_fixlayouts<Opr>(
- m_layouts, arity_in, arity_out);
- std::string msg = ssprintf(
- "(opr : %s, layouts %s, with attribute(%s) and "
- "without attribute(%s)",
- m_base_mgb_opr->dyn_typeinfo()->name,
- layouts_str.c_str(),
- Algorithm::attribute_str(target_attr.first).c_str(),
- Algorithm::attribute_str(target_attr.second)
- .c_str());
- mgb_log_warn(
- "No algo get from cache for %s. This may caused by "
- "mismatch with model and cache file or imcomplete "
- "cache file. ex. profiling with version1, but "
- "inferencing on version2 or profiling modelA but "
- "inferencing modelB",
- msg.c_str());
- }
- return;
- }
- } else {
- auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit(
- owner_graph(), m_cn, m_execution_policy.workspace_limit);
-
- auto attr = extract_algo_attribute(selected_strategy);
- policy.algo = APPLY(m_dnn_opr->get_algorithm_info_heuristic(
- args..., workspace_limit, attr.first,
- attr.second),
- m_layouts)
- .desc;
- mgb_assert(policy.algo.valid(),
- "No algo found from heuristic with strategy %u and "
- "workspace limit %zu",
- static_cast<uint32_t>(selected_strategy),
- workspace_limit);
- }
- }
-
- Algorithm* algo = m_dnn_opr->get_algorithm_from_desc(policy.algo);
- mgb_assert(algo, "Unknown algo description");
- std::vector<Algorithm::SearchItem>&& sub_items = algo->get_subopr_list(
- to_layout_array<Opr>(m_layouts), m_dnn_opr);
-
- FOREACH_OPR_TYPE_DISPATCH(sub_items, {
- auto&& megdnn_opr = intl::create_megdnn_opr<_Opr>(m_cn);
- megdnn_opr->param() =
- Algorithm::deserialize_read_pod<typename _Opr::Param>(
- _item.param);
- typename AlgoChooser<_Opr>::AlgoChooserHelper sub_helper(
- to_fixed_layouts<_Opr>(_item.layouts), megdnn_opr.get(),
- _item.param, m_base_mgb_opr, m_cn, m_execution_policy,
- m_allow_weight_preprocess);
- policy.sub_policy.push_back({});
- sub_helper.construct_execution_policy(selected_strategy,
- policy.sub_policy.back(),
- retrive_from_cache, allow_log);
- if (!policy.sub_policy.back().algo.valid()) {
- // means sub_helper.construct_execution_policy fails. clean up
- // policy.algo and return
- policy = {};
- return;
- }
- });
- MIDOUT_E
- }
-
- template <typename Opr>
- size_t AlgoChooser<Opr>::AlgoChooserHelper::get_workspace_size_bytes(
- const ImplExecutionPolicy& policy) const {
- MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("get_workspace_size_bytes")))
- m_dnn_opr->execution_policy() = policy;
- size_t result;
- if_constexpr<opr_supports_preprocess<Opr>()>(
- [&](auto _) {
- auto&& opr = _(m_dnn_opr);
- auto prep = this->construct_fake_preprocess_filter();
- PreprocessFilter<Opr>* prep_ptr =
- prep.valid() ? &prep.val() : nullptr;
- result = std::max(
- APPLY(opr->get_preprocess_workspace_in_bytes(args...),
- m_layouts),
- APPLY(opr->get_workspace_in_bytes(args..., prep_ptr),
- m_layouts));
- },
- /* else */
- [&](auto _) {
- result = APPLY(_(m_dnn_opr)->get_workspace_in_bytes(args...),
- m_layouts);
- });
- return result;
- MIDOUT_E
- }
-
- template <typename Opr>
- std::vector<typename AlgoChooser<Opr>::ImplAlgo>
- AlgoChooser<Opr>::AlgoChooserHelper::get_all_candidates() const {
- MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("get_all_candidates")))
- auto heu = choose_by_heuristic(m_execution_policy.strategy);
- auto&& ret =
- APPLY(m_dnn_opr->get_all_algorithms_info(args...), m_layouts);
- bool found = false;
- for (size_t i = 0; i < ret.size(); ++i) {
- if (ret[i].desc == heu.algo) {
- found = true;
- std::swap(ret[i], ret[0]);
- break;
- }
- }
-
- Algorithm* palgo = m_dnn_opr->get_algorithm_from_desc(heu.algo);
- mgb_assert(palgo, "Unknown algo description");
- mgb_assert(found,
- "algo %s got by heuristic not found in "
- "candidate list",
- palgo->name());
- return std::move(ret);
- MIDOUT_E
- }
-
- template <typename Opr>
- Maybe<AlgoChooserProfileCache::ResultEntry>
- AlgoChooser<Opr>::AlgoChooserHelper::profile_single_algo(
- const ImplExecutionPolicy& policy, double& timeout) const {
- MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("profile_single_algo")))
- typename TimedProfiler<Opr>::Param param;
- // force check copy size <= dest len-1 from gcc8 for safe
- param.execution_policy =
- TimedProfiler<Opr>::Param::ExecutionPolicyBlob::serialize(policy);
- param.workspace = get_workspace_size_bytes(policy);
- for (int i = 0; i < arity; ++i) {
- auto&& src = m_layouts[i];
- mgb_assert(src.format.is_default() &&
- (src.dtype.category() == DTypeCategory::FLOAT ||
- src.dtype.category() == DTypeCategory::INT ||
- src.dtype.category() == DTypeCategory::QUANTIZED),
- "unsupported layout in profiling: %s",
- src.to_string().c_str());
- param.dtypes[i] = src.dtype.enumv();
- }
- param.comp_node_loc = m_cn.locator();
- mgb_assert(param.shapes.size() == m_layouts.size());
- for (size_t i = 0; i < param.shapes.size(); ++i)
- param.shapes[i] = m_layouts[i];
- param.opr_param = m_dnn_opr->param();
- param.allow_weight_preprocess = m_allow_weight_preprocess;
-
- Algorithm* palgo = m_dnn_opr->get_algorithm_from_desc(policy.algo);
- mgb_assert(palgo, "can not find algo when profile single algo");
-
- auto rst = TimedProfiler<Opr>::profile(param, timeout);
- // MIOpen conv profiles all available algos when a specfic shape is
- // provided for the first time, which probably adds to the result time.
- // Therefore, a second profile execution is needed.
- if (strncmp(palgo->name(), "MIOpen", 6) == 0) {
- rst = TimedProfiler<Opr>::profile(param, timeout);
- }
- if (!rst.valid())
- return None;
-
- std::string algo_desc;
- serialize_write_pod(policy.algo, algo_desc);
- return AlgoChooserProfileCache::ResultEntry{
- algo_desc, static_cast<uint32_t>(palgo->attribute()),
- rst.val().time, param.workspace};
- MIDOUT_E
- }
-
- template <typename Opr>
- void AlgoChooser<Opr>::AlgoChooserHelper::profile(
- const ExecutionStrategy& selected_strategy) const {
- MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("profile")))
- if (get_profile_result_from_cache(selected_strategy).valid())
- return;
- AlgoChooserProfileCache::Result prof_rst;
-
- auto target_attr = extract_algo_attribute(selected_strategy);
- std::string layouts_str =
- format_fixlayouts<Opr>(m_layouts, arity_in, arity_out);
- double cur_timeout = 0;
-
- auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit(
- owner_graph(), m_cn, m_execution_policy.workspace_limit);
- RealTimer timer;
- for (auto algo : get_all_candidates()) {
- Maybe<AlgoChooserProfileCache::ResultEntry> cur_rst;
-
- ImplExecutionPolicy policy;
- policy.algo = algo.desc;
-
- //! check negative attribute : skip negative attribute
- auto palgo = m_dnn_opr->get_algorithm_from_desc(policy.algo);
- if (palgo->contain_attribute_any(target_attr.second)) {
- mgb_log_debug(
- "skip algo %s, which matches the profile strategy required "
- "'not contain attribute(%s).'",
- algo.desc.name.c_str(),
- Algorithm::attribute_str(target_attr.second).c_str());
- continue;
- }
-
- //! check workspace limit
- construct_execution_policy(selected_strategy, policy);
- mgb_assert(policy.algo.valid(),
- "construct execution policy must success when profiling");
- if (get_workspace_size_bytes(policy) > workspace_limit) {
- continue;
- }
-
- std::string msg = ssprintf("profiling %s algorithm %s %s",
- m_base_mgb_opr->dyn_typeinfo()->name,
- algo.desc.name.c_str(), layouts_str.c_str());
- timer.reset();
- MGB_TRY { cur_rst = profile_single_algo(policy, cur_timeout); }
- MGB_CATCH(std::exception & exc, {
- mgb_log_warn("caught exception during %s: %s", msg.c_str(),
- exc.what());
- continue;
- })
- MGB_CATCH(..., {
- mgb_log_warn("caught exception during %s", msg.c_str());
- continue;
- })
- if (!cur_rst.valid()) {
- mgb_log_warn("timeout when %s; timeout setting: %.3fsec",
- msg.c_str(), cur_timeout);
- continue;
- }
- if (!cur_timeout) {
- cur_timeout = timer.get_secs() + TIMEOUT_TOLERANCE;
- } else {
- cur_timeout =
- std::min(cur_timeout, timer.get_secs() + TIMEOUT_TOLERANCE);
- }
- auto&& rst = cur_rst.val();
- mgb_log_debug("%s: workspace: %zu; time: %.3gsec", msg.c_str(),
- rst.workspace, rst.time);
- prof_rst.push_back(rst);
- }
- std::string msg = ssprintf(
- "no usable %s algorithm %s without attribute(%s) or could not meet "
- "workspace limite requirement(%zu)",
- m_base_mgb_opr->dyn_typeinfo()->name, layouts_str.c_str(),
- Algorithm::attribute_str(target_attr.second).c_str(),
- workspace_limit);
- mgb_assert(!prof_rst.empty(), "%s", msg.c_str());
-
- FixedTensorLayouts origin_layouts = m_layouts;
- typename Opr::Param origin_param = m_dnn_opr->param();
- AlgoChooserProfileCache::Key cache_key{origin_layouts.data(),
- origin_layouts.size(), &origin_param,
- sizeof(origin_param)};
-
- AlgoChooserProfileCache cache(m_cn, profile_name(m_dnn_opr).c_str());
- cache.put(cache_key, prof_rst);
- MIDOUT_E
- }
-
- template <typename Opr>
- Maybe<PreprocessFilter<Opr>>
- AlgoChooser<Opr>::AlgoChooserHelper::construct_fake_preprocess_filter() const {
- MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("construct_fake_preprocess_filter")))
- Maybe<PreprocessFilter<Opr>> result = None;
- if_constexpr<opr_supports_preprocess<Opr>()>([&](auto _) {
- if (!m_allow_weight_preprocess)
- return;
- auto opr = _(m_dnn_opr);
- auto layouts = APPLY(opr->deduce_preprocessed_filter_layout(args...),
- m_layouts);
- //! No preprocess layout means no need weight preprocess
- if (layouts.empty()) {
- return;
- }
- //! all layouts arm empty means no need weight preprocess
- bool layout_valid = false;
- for (auto&& layout : layouts) {
- if (!layout.is_empty()) {
- layout_valid = true;
- }
- }
- if (!layout_valid) {
- return;
- }
-
- result = PreprocessFilter<Opr>{};
- auto& res = result.val();
- res.algorithm_id = nullptr;
- res.tensors.resize(layouts.size());
- for (size_t i = 0; i < layouts.size(); i++) {
- res.tensors[i] = megdnn::TensorND(nullptr, layouts[i]);
- }
- });
- return result;
- MIDOUT_E
- }
-
- template <typename Opr>
- std::pair<AlgoAttribute, AlgoAttribute>
- AlgoChooser<Opr>::AlgoChooserHelper::extract_algo_attribute(
- const ExecutionStrategy& strategy) const {
- std::pair<AlgoAttribute, AlgoAttribute> ret =
- std::make_pair(AlgoAttribute::DEFAULT, AlgoAttribute::DEFAULT);
-
- //! from strategy
- if (strategy & ExecutionStrategy::REPRODUCIBLE) {
- ret.first |= AlgoAttribute::REPRODUCIBLE;
- }
- if (strategy & ExecutionStrategy::OPTMIZED) {
- ret.second |= AlgoAttribute::NAIVE;
- }
-
- return ret;
- }
-
- #define INST(Opr) \
- template AlgoChooser<megdnn::Opr>::AlgoChooserHelper::AlgoChooserHelper( \
- const FixedTensorLayouts& layouts, megdnn::Opr* megdnn_opr, \
- const std::string& param_str, const cg::OperatorNodeBase* mgb_opr, \
- const CompNode& cn, \
- const megdnn::param::ExecutionPolicy& execution_policy, \
- bool allow_weight_preprocess); \
- template typename AlgoChooser<megdnn::Opr>::ImplExecutionPolicy \
- AlgoChooser<megdnn::Opr>::AlgoChooserHelper::choose_by_heuristic( \
- const ExecutionStrategy& select_strategy) const; \
- template typename AlgoChooser<megdnn::Opr>::ImplExecutionPolicy \
- AlgoChooser<megdnn::Opr>::AlgoChooserHelper::choose_by_profile( \
- const ExecutionStrategy& select_strategy, bool enable_update) \
- const; \
- template typename AlgoChooser<megdnn::Opr>::ImplAlgoDesc \
- AlgoChooser<megdnn::Opr>::AlgoChooserHelper:: \
- get_profile_result_from_cache( \
- const ExecutionStrategy& select_strategy) const; \
- template void \
- AlgoChooser<megdnn::Opr>::AlgoChooserHelper::construct_execution_policy( \
- const ExecutionStrategy& select_strategy, \
- typename AlgoChooser<megdnn::Opr>::ImplExecutionPolicy& policy, \
- bool retrive_from_cache, bool allow_log) const; \
- template size_t \
- AlgoChooser<megdnn::Opr>::AlgoChooserHelper::get_workspace_size_bytes( \
- const typename AlgoChooser<megdnn::Opr>::ImplExecutionPolicy& \
- policy) const; \
- template std::vector<typename AlgoChooser<megdnn::Opr>::ImplAlgo> \
- AlgoChooser<megdnn::Opr>::AlgoChooserHelper::get_all_candidates() const; \
- template Maybe<AlgoChooserProfileCache::ResultEntry> \
- AlgoChooser<megdnn::Opr>::AlgoChooserHelper::profile_single_algo( \
- const typename AlgoChooser<megdnn::Opr>::ImplExecutionPolicy& \
- policy, \
- double& timeout) const; \
- template std::pair<AlgoAttribute, AlgoAttribute> \
- AlgoChooser<megdnn::Opr>::AlgoChooserHelper::extract_algo_attribute( \
- const ExecutionStrategy& strategy) const; \
- template void AlgoChooser<megdnn::Opr>::AlgoChooserHelper::profile( \
- const ExecutionStrategy& selected_strategy) const;
-
- MGB_FOREACH_FASTRUN_OPR(INST)
- #undef INST
-
- //////////////////////////////// AlgoChoose /////////////////////////////
- template <typename Opr>
- typename AlgoChooser<Opr>::ImplExecutionPolicy AlgoChooser<Opr>::get_policy(
- const AlgoChooserHelper& helper) {
- auto opr_strategy = helper.execution_policy().strategy;
- if (opr_strategy & ExecutionStrategy::HEURISTIC) {
- if (opr_strategy & ExecutionStrategy::PROFILE) {
- //! this strategy will choose from cache first, then choost by
- //! heuristic if fail.
- ImplExecutionPolicy policy =
- helper.choose_by_profile(opr_strategy, false);
- if (!policy.algo.valid()) {
- policy = helper.choose_by_heuristic(opr_strategy);
- }
- return policy;
- } else {
- return helper.choose_by_heuristic(opr_strategy);
- }
- }
- #if MGB_ENABLE_FASTRUN
- else if (opr_strategy & ExecutionStrategy::PROFILE) {
- return helper.choose_by_profile(opr_strategy, true);
- }
- #endif
- else {
- mgb_throw(GraphError, "bad ExecutionPolicy strategy");
- }
- }
-
- template <typename Opr>
- size_t AlgoChooser<Opr>::setup_algo(const FixedTensorLayouts& layouts,
- Opr* megdnn_opr, const MGBOpr* mgb_opr,
- bool allow_weight_preprocess) {
- if (WorkspaceLimitGetter::is_prealloc_run(mgb_opr->owner_graph())) {
- return 0;
- }
-
- std::string param_str;
- Algorithm::serialize_write_pod(megdnn_opr->param(), param_str);
- AlgoChooserHelper helper(layouts, megdnn_opr, param_str, mgb_opr,
- mgb_opr->comp_node(), mgb_opr->execution_policy(),
- allow_weight_preprocess);
-
- ImplExecutionPolicy policy;
- if (auto algo_choose_hook = mgb_opr->algo_chooser()) {
- policy = algo_choose_hook(mgb_opr);
- auto strategy =
- ExecutionStrategy::HEURISTIC | ExecutionStrategy::REPRODUCIBLE;
- bool retrive_from_cache = false;
- helper.construct_execution_policy(strategy, policy, retrive_from_cache);
- }
- if (!policy.algo.valid()) {
- policy = get_policy(helper);
- }
- size_t workspace = helper.get_workspace_size_bytes(policy);
-
- std::string ret;
- ret.append(mgb_opr->dyn_typeinfo()->name);
- ret += format_fixlayouts<Opr>(layouts, arity_in, arity_out);
- Algorithm* palgo = megdnn_opr->get_algorithm_from_desc(policy.algo);
- mgb_assert(palgo, "Unknown algo description");
- ret.append("): algo=" + std::string(palgo->name()));
- ret.append(ssprintf(" workspace=%.2fMiB attirbute=%d",
- workspace / (1024 * 1024.0),
- static_cast<uint32_t>(palgo->attribute())));
- mgb_log_debug("%s", ret.c_str());
-
- megdnn_opr->execution_policy() = policy;
- return workspace;
- }
-
- #define INST(Opr) \
- template AlgoChooser<megdnn::Opr>::ImplExecutionPolicy \
- AlgoChooser<megdnn::Opr>::get_policy(const AlgoChooserHelper& proxy); \
- template size_t AlgoChooser<megdnn::Opr>::setup_algo( \
- const FixedTensorLayouts& layouts, megdnn::Opr* megdnn_opr, \
- const MGBOpr* mgb_opr, bool allow_weight_preprocess);
-
- MGB_FOREACH_FASTRUN_OPR(INST)
- #undef INST
-
- } // namespace opr
- } // namespace mgb
-
- // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}
|