|
- # -*- coding: utf-8 -*-
- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- #
- # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- import numpy as np
- import pytest
-
- from megengine.core import tensor
- from megengine.module import Linear, Module
- from megengine.optimizer import SGD
-
-
- class Blur(Module):
- def __init__(self, dim1=16, dim2=128, dim3=1):
- super().__init__()
-
- self.fc1 = Linear(dim1, dim2)
- self.fc2 = Linear(dim2, dim3)
-
- def forward(self, x):
- x = self.fc1(x)
- x = self.fc2(x)
- return x.mean(axis=1, keepdims=True)
-
-
- @pytest.mark.regression
- def test_blur():
- net = Blur()
- data = tensor(np.random.random((32, 16)).astype("float32"))
-
- opt = SGD(net.parameters(requires_grad=True), lr=0.1)
- opt.zero_grad()
-
- loss = net(data)
- opt.backward(loss.sum())
|