|
- /**
- * \file dnn/test/cpu/mask_conv.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- */
-
- #include "test/cpu/fixture.h"
-
- #include "megdnn/oprs.h"
- #include "test/common/benchmarker.h"
- #include "test/common/checker.h"
- #include "test/common/mask_conv.h"
- #include "test/common/rng.h"
- #include "test/common/utils.h"
-
- using namespace megdnn;
- using namespace test;
-
- TEST_F(CPU, MASK_CONV) {
- mask_conv_test(handle());
- }
-
- TEST_F(CPU, MASK_CONV_BENCHMARK) {
- mask_conv_benchmark(handle());
- }
-
- TEST_F(CPU, MASK_PROPAGATE) {
- param::MaskPropagate mask_param;
- auto mask_check = [&](const TensorNDArray& tensors) {
- auto mask_src = tensors[0];
- auto mask_dst = tensors[1];
-
- auto src_ptr = static_cast<float*>(megdnn_malloc(
- handle(), mask_src.layout.total_nr_elems() * sizeof(float)));
- auto src = TensorND{
- src_ptr,
- TensorLayout{mask_src.layout.reshape({1, 1, mask_src.layout[0],
- mask_src.layout[1]}),
- dtype::Float32()}};
- for (size_t i = 0; i < src.layout.total_nr_elems(); ++i) {
- src_ptr[i] = static_cast<float>(mask_src.ptr<int>()[i]);
- }
-
- auto filter_ptr = static_cast<float*>(megdnn_malloc(
- handle(),
- mask_param.kernel_h * mask_param.kernel_w * sizeof(float)));
- auto filter = TensorND{
- static_cast<void*>(filter_ptr),
- TensorLayout{{1, 1, mask_param.kernel_h, mask_param.kernel_w},
- dtype::Float32()}};
- for (size_t i = 0; i < mask_param.kernel_h * mask_param.kernel_w; ++i) {
- filter_ptr[i] = 1.0;
- }
-
- TensorLayout dst_layout{dtype::Float32()};
-
- param::Convolution conv_param{
- param::Convolution::Mode::CROSS_CORRELATION,
- mask_param.pad_h,
- mask_param.pad_w,
- mask_param.stride_h,
- mask_param.stride_w,
- mask_param.dilate_h,
- mask_param.dilate_w};
- auto opr = handle()->create_operator<Convolution>();
- opr->param() = conv_param;
- opr->deduce_layout(src.layout, filter.layout, dst_layout);
- auto dst_ptr = static_cast<float*>(megdnn_malloc(
- handle(), mask_dst.layout.total_nr_elems() * sizeof(float)));
- auto dst = TensorND{dst_ptr, dst_layout};
- WorkspaceWrapper workspace{
- handle(), opr->get_workspace_in_bytes(src.layout, filter.layout,
- dst.layout, nullptr)};
- opr->exec(src, filter, dst, nullptr, workspace.workspace());
- for (size_t i = 0; i < dst.layout.total_nr_elems(); ++i) {
- mask_dst.ptr<int>()[i] = dst_ptr[i] > 0;
- }
- delete dst_ptr;
- delete filter_ptr;
- delete src_ptr;
- };
-
- Checker<MaskPropagate> checker(handle());
- auto rng = std::make_unique<BernoulliRNG>(0.5);
- checker.set_extra_opr_impl(mask_check)
- .set_dtype(0, dtype::Int32())
- .set_rng(0, rng.get());
-
- auto run = [&](size_t IH, size_t IW, size_t FH, size_t FW, size_t SH = 1,
- size_t SW = 1, size_t PH = 0, size_t PW = 0, size_t DH = 1,
- size_t DW = 1) {
- mask_param.kernel_h = FH;
- mask_param.kernel_w = FW;
- mask_param.pad_h = PH;
- mask_param.pad_w = PW;
- mask_param.stride_h = SH;
- mask_param.stride_w = SW;
- mask_param.dilate_h = DH;
- mask_param.dilate_w = DW;
- checker.set_param(mask_param);
-
- TensorShape src_shape{IH, IW}, dst_shape{};
-
- checker.execs({src_shape, dst_shape});
- };
- run(5, 5, 3, 2);
- run(5, 5, 2, 3, 2, 2);
- run(5, 5, 3, 3, 2, 2, 1, 2);
- run(5, 5, 3, 3, 2, 1, 1, 2);
- run(5, 5, 3, 3, 1, 2, 2, 2);
- run(24, 23, 4, 4, 1, 1, 3, 2);
- run(24, 23, 4, 4, 1, 1, 3, 2, 2, 2);
- run(24, 23, 4, 4, 1, 1, 3, 2, 2, 3);
- run(24, 23, 4, 4, 1, 1, 3, 2, 3, 3);
- }
-
- // vim: syntax=cpp.doxygen
|