|
- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- #
- # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- import os
-
- import numpy as np
-
- import megengine as mge
- import megengine.autodiff as ad
- import megengine.module as M
- import megengine.optimizer as optimizer
- from megengine import Parameter, tensor
- from megengine.module import Module
-
-
- class Simple(Module):
- def __init__(self):
- super().__init__()
- self.a = Parameter([1.23], dtype=np.float32)
-
- def forward(self, x):
- x = x * self.a
- return x
-
-
- class Net(Module):
- def __init__(self):
- super().__init__()
- self.fc = M.Linear(1, 1)
-
- def forward(self, images):
- x = self.fc(images)
- loss = x.mean() * 10000
- return loss
-
-
- def test_load_state_dict_no_cache(monkeypatch):
- with monkeypatch.context() as mk:
- mk.setenv("MEGENGINE_INPLACE_UPDATE", "1")
- net = Net()
-
- optim = optimizer.SGD(net.parameters(), lr=0.1)
- gm = ad.GradManager().attach(net.parameters())
- state = {
- "fc.weight": np.array([[0]], dtype=np.float32),
- "fc.bias": np.array([0.0], dtype=np.float32),
- }
- net.load_state_dict(state)
- images = mge.tensor([[0]], dtype=np.float32)
- with gm:
- loss = net(images)
- gm.backward(loss)
- optim.step()
- optim.clear_grad()
-
-
- def test_save_load():
- net = Simple()
-
- optim = optimizer.SGD(net.parameters(), lr=1.0, momentum=0.9)
- optim.clear_grad()
- gm = ad.GradManager().attach(net.parameters())
-
- data = tensor([2.34])
-
- with gm:
- loss = net(data)
- gm.backward(loss)
-
- optim.step()
-
- model_name = "simple.pkl"
-
- mge.save(
- {
- "name": "simple",
- "state_dict": net.state_dict(),
- "opt_state": optim.state_dict(),
- },
- model_name,
- )
-
- # Load param to cpu
- checkpoint = mge.load(model_name, map_location="cpu0")
- device_save = mge.get_default_device()
- mge.set_default_device("cpu0")
- net = Simple()
- net.load_state_dict(checkpoint["state_dict"])
- optim = optimizer.SGD(net.parameters(), lr=1.0, momentum=0.9)
- optim.load_state_dict(checkpoint["opt_state"])
- os.remove("simple.pkl")
-
- with gm:
- loss = net([1.23])
- gm.backward(loss)
-
- optim.step()
- # Restore device
- mge.set_default_device(device_save)
|