|
- /**
- * \file dnn/test/arm_common/matrix_mul.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
- * implied.
- */
- #include "test/arm_common/fixture.h"
-
- #include "test/common/benchmarker.h"
- #include "test/common/checker.h"
- #include "test/common/matrix_mul.h"
- #include "test/common/rng.h"
-
- using namespace megdnn;
- using namespace test;
-
- TEST_F(ARM_COMMON, MATRIX_MUL_INT8x8x32) {
- matrix_mul::check_matrix_mul(dtype::Int8{}, dtype::Int8{}, dtype::Int32{},
- handle());
- }
-
- TEST_F(ARM_COMMON, MATRIX_MUL_INT8x8x16) {
- matrix_mul::check_matrix_mul(dtype::Int8{}, dtype::Int8{}, dtype::Int16{},
- handle());
- }
-
- TEST_F(ARM_COMMON, MATRIX_MUL_QUINT8) {
- matrix_mul::check_matrix_mul(dtype::Quantized8Asymm(1.2f, (uint8_t)127),
- dtype::Quantized8Asymm(1.3f, (uint8_t)129), {},
- handle());
- }
-
- TEST_F(ARM_COMMON, MATRIX_MUL_FP32) {
- Checker<MatrixMul> checker(handle());
- using Param = MatrixMul::Param;
-
- auto run = [&](size_t M, size_t K, size_t N) {
- Param param;
- param.transposeA = false;
- param.transposeB = false;
- TensorShape A, B;
- A = TensorShape{M, K};
- B = TensorShape{K, N};
- checker.set_param(param)
- .set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_dtype(2, dtype::Float32())
- .execs({A, B, {}});
- };
-
- checker.set_before_exec_callback(
- AlgoChecker<MatrixMul>("ARM_COMMON_F32_GEMV"));
- // M < 8
- for (size_t M : {1, 2, 3, 4, 5, 6, 7})
- for (size_t K : {7, 1024, 2048})
- for (size_t N : {7, 1024, 2056})
- run(M, K, N);
- // M = 8,K = 1, 2
- for (size_t M : {8})
- for (size_t K : {1, 2})
- for (size_t N : {7, 1024, 2056})
- run(M, K, N);
- // N = 1
- for (size_t M : {1, 2, 3, 4, 5, 6, 7})
- for (size_t K : {7, 1024, 2048})
- for (size_t N : {1})
- run(M, K, N);
- }
- #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
-
- TEST_F(ARM_COMMON, MATRIX_MUL_FP16) {
- Checker<MatrixMul> checker(handle());
- checker.set_epsilon(1e-2);
- NormalRNG rng(2.f);
- checker.set_rng(0, &rng).set_rng(1, &rng);
-
- using Param = MatrixMul::Param;
- auto args = matrix_mul::get_matmul_args_no_mask();
-
- for (auto& arg : args) {
- size_t m = arg.m, n = arg.n, k = arg.k;
- Param param;
- param.transposeA = false;
- param.transposeB = false;
- TensorShape A, B;
- A = TensorShape{m, k};
- B = TensorShape{k, n};
- checker.set_param(param)
- .set_dtype(0, dtype::Float16())
- .set_dtype(1, dtype::Float16())
- .set_dtype(2, dtype::Float16())
- .execs({A, B, {}});
- }
- }
- TEST_F(ARM_COMMON, MATRIX_MUL_FP16_TEST) {
- Checker<MatrixMul> checker(handle());
- using Param = MatrixMul::Param;
- checker.set_epsilon(1e-2);
- NormalRNG rng(2.f);
- checker.set_rng(0, &rng).set_rng(1, &rng);
-
- auto run = [&](size_t M, size_t K, size_t N) {
- Param param;
- param.transposeA = false;
- param.transposeB = false;
- TensorShape A, B;
- A = TensorShape{M, K};
- B = TensorShape{K, N};
- checker.set_param(param)
- .set_dtype(0, dtype::Float16())
- .set_dtype(1, dtype::Float16())
- .set_dtype(2, dtype::Float16())
- .execs({A, B, {}});
- };
- checker.set_before_exec_callback(
- AlgoChecker<MatrixMul>("ARM_COMMON_F16_GEMV"));
-
- // M = 1, 2, 3, 4
- for (size_t M : {1, 2, 3, 4})
- for (size_t K : {7, 512, 1024})
- for (size_t N : {13, 1024, 2048})
- run(M, K, N);
- // N = 1
- for (size_t M : {1, 2, 3, 4})
- for (size_t K : {7, 512, 1024})
- for (size_t N : {1})
- run(M, K, N);
- }
- #endif
-
- TEST_F(ARM_COMMON, QINT8x8x32_GEMV) {
- Checker<MatrixMul> checker(handle());
- using Param = MatrixMul::Param;
-
- checker.set_before_exec_callback(
- AlgoChecker<MatrixMul>("ARM_COMMON_INT8X8X32_GEMV"));
-
- std::unique_ptr<RNG> rng = std::make_unique<UniformIntRNG>(-127, 127);
- checker.set_rng(0, rng.get()).set_rng(1, rng.get());
-
- auto run = [&](size_t M, size_t K, size_t N) {
- Param param;
- param.transposeA = false;
- param.transposeB = false;
- TensorShape A, B;
- A = TensorShape{M, K};
- B = TensorShape{K, N};
- checker.set_param(param)
- .set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .execs({A, B, {}});
- };
-
- // N = 1
- for (size_t M : {1, 10, 16, 33, 64})
- for (size_t K : {7, 512, 1024})
- for (size_t N : {1})
- run(M, K, N);
- }
-
- TEST_F(ARM_COMMON, QINT8x8x32_GEMV_MK4) {
- Checker<MatrixMul> checker(handle());
- using Param = MatrixMul::Param;
-
- checker.set_before_exec_callback(
- AlgoChecker<MatrixMul>("ARM_COMMON_INT8X8X32_GEMV_MK4"));
-
- std::unique_ptr<RNG> rng = std::make_unique<UniformIntRNG>(-127, 127);
- checker.set_rng(0, rng.get()).set_rng(1, rng.get());
-
- auto run = [&](size_t M, size_t K, size_t N) {
- MEGDNN_MARK_USED_VAR(N);
- Param param;
- param.format = param::MatrixMul::Format::MK4;
- param.transposeA = false;
- param.transposeB = false;
- TensorShape A, B;
- A = TensorShape{M / 4, K / 4, 4, 4};
- B = TensorShape{K / 4, 1, 4};
- checker.set_param(param)
- .set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .execs({A, B, {}});
- };
-
- // N = 1
- for (size_t M : {4, 16, 128, 1024})
- for (size_t K : {4, 8, 12, 16, 20, 24, 256, 1024})
- run(M, K, 1);
- }
-
- #if __ARM_FEATURE_DOTPROD
- TEST_F(ARM_COMMON, QINT8x8x32_GEMV_MK4_DOT) {
- Checker<MatrixMul> checker(handle());
- using Param = MatrixMul::Param;
-
- checker.set_before_exec_callback(
- AlgoChecker<MatrixMul>("ARM_COMMON_INT8X8X32_GEMV_MK4_DOT"));
-
- std::unique_ptr<RNG> rng = std::make_unique<UniformIntRNG>(-127, 127);
- checker.set_rng(0, rng.get()).set_rng(1, rng.get());
-
- auto run = [&](size_t M, size_t K, size_t N) {
- Param param;
- param.format = param::MatrixMul::Format::MK4_DOT;
- param.transposeA = false;
- param.transposeB = false;
- TensorShape A, B;
- A = TensorShape{M / 4, K / 4, 4, 4};
- B = TensorShape{K / 4, 1, 4};
- checker.set_param(param)
- .set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .execs({A, B, {}});
- };
-
- // N = 1
- for (size_t M : {4, 16, 128, 1024})
- for (size_t K : {4, 8, 12, 16, 20, 24, 256, 1024})
- run(M, K, 1);
- }
- #endif
-
- TEST_F(ARM_COMMON, QINT8x8x32_GEVM) {
- Checker<MatrixMul> checker(handle());
- using Param = MatrixMul::Param;
-
- checker.set_before_exec_callback(AlgoChecker<MatrixMul>("ARM_COMMON_GEVM"));
-
- std::unique_ptr<RNG> rng = std::make_unique<UniformIntRNG>(-127, 127);
- checker.set_rng(0, rng.get()).set_rng(1, rng.get());
-
- auto run = [&](size_t M, size_t K, size_t N) {
- Param param;
- param.transposeA = false;
- param.transposeB = true;
- TensorShape A, B;
- A = TensorShape{M, K};
- B = TensorShape{N, K};
- checker.set_param(param)
- .set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .execs({A, B, {}});
- };
-
- // M = 1
- for (size_t N : {1, 10, 16, 33, 64})
- for (size_t K : {7, 512, 1024})
- for (size_t M : {1})
- run(M, K, N);
- }
-
- TEST_F(ARM_COMMON, FP32_GEVM) {
- Checker<MatrixMul> checker(handle());
- using Param = MatrixMul::Param;
-
- checker.set_before_exec_callback(AlgoChecker<MatrixMul>("ARM_COMMON_GEVM"));
-
- checker.set_epsilon(1e-2);
- auto run = [&](size_t M, size_t K, size_t N) {
- Param param;
- param.transposeA = false;
- param.transposeB = true;
- TensorShape A, B;
- A = TensorShape{M, K};
- B = TensorShape{N, K};
- checker.set_param(param).execs({A, B, {}});
- };
-
- // M = 1
- for (size_t M : {1})
- for (size_t K : {1000, 4096, 25088})
- for (size_t N : {1000, 4096})
- run(M, K, N);
- }
-
- TEST_F(ARM_COMMON, FP32_GEMV_MK4) {
- Checker<MatrixMul> checker(handle());
- using Param = MatrixMul::Param;
-
- checker.set_before_exec_callback(
- AlgoChecker<MatrixMul>("ARM_COMMON_F32_GEMV_MK4"));
-
- checker.set_epsilon(1e-2);
- auto run = [&](size_t M, size_t K) {
- Param param;
- param.format = param::MatrixMul::Format::MK4;
- param.transposeA = false;
- param.transposeB = false;
- TensorShape A, B;
- A = TensorShape{M / 4, K / 4, 4, 4};
- B = TensorShape{K / 4, 1, 4};
- checker.set_param(param).execs({A, B, {}});
- };
-
- // N = 1
- for (size_t M : {4, 16, 128, 1024})
- for (size_t K : {4, 8, 12, 128, 256, 4096})
- run(M, K);
- }
-
- #if MEGDNN_WITH_BENCHMARK
-
- TEST_F(ARM_COMMON, BENCHMARK_SGEMV) {
- int exec_times = 10;
- Benchmarker<MatrixMul> benchmarker(handle());
- benchmarker.set_times(exec_times);
-
- auto run = [&](size_t M, size_t K, size_t N) {
- printf("SGEMV: (%zu, %zu, %zu)\n", M, K, N);
- benchmarker.set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32());
- auto time = benchmarker.exec({{M, K}, {K, N}, {}}) / exec_times;
- auto computations = 2.f * M * K * N * 1e-6;
- auto perf = computations / time;
- printf("gemv fp32, Performance is %f Gflops\n", perf);
- };
-
- printf("warm up:\n");
- for (int i = 0; i < 50; i++) {
- benchmarker.set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_display(false)
- .exec({{2, 1024}, {1024, 512}, {}});
- benchmarker.set_display(true);
- }
-
- // run gemv
- for (size_t M : {1, 2, 4, 8})
- for (size_t K : {1024, 1536, 2048})
- for (size_t N : {512, 1024})
- run(M, K, N);
-
- for (size_t M : {4, 64, 1024, 4096})
- for (size_t K : {128, 256, 1024, 4096})
- run(M, K, 1);
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_SGEMV_FP32) {
- int exec_times = 50;
- Benchmarker<MatrixMul> benchmarker(handle());
- benchmarker.set_times(exec_times);
- benchmarker.set_before_exec_callback(
- AlgoChecker<MatrixMul>("ARM_COMMON_F32_GEMV"));
-
- auto run = [&](size_t M, size_t K, size_t N) {
- printf("SGEMV: (%zu, %zu, %zu)\n", M, K, N);
- benchmarker.set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_dtype(2, dtype::Float32());
- auto time = benchmarker.exec({{M, K}, {K, N}, {}}) / exec_times;
- auto computations = 2 * M * K * N * 1e-6;
- auto perf = computations / time;
- printf("gemv fp32, Performance is %f Gflops\n", perf);
- };
-
- printf("warm up:\n");
- for (int i = 0; i < 50; i++) {
- benchmarker.set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_display(false)
- .exec({{2, 1024}, {1024, 512}, {}});
- benchmarker.set_display(true);
- }
-
- // run gemv
- run(12, 48, 1);
- run(48, 12, 1);
- run(32, 128, 1);
- run(128, 32, 1);
- run(64, 256, 1);
- run(256, 64, 1);
- run(128, 512, 1);
- run(512, 128, 1);
- run(256, 1024, 1);
- run(1024, 256, 1);
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_SGEMV_MK4) {
- int exec_times = 10;
- using Param = MatrixMul::Param;
- Param param;
- param.format = param::MatrixMul::Format::MK4;
- param.transposeA = false;
- param.transposeB = false;
- Benchmarker<MatrixMul> benchmarker(handle());
- benchmarker.set_times(exec_times);
- benchmarker.set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_param(param);
-
- auto run = [&](size_t M, size_t K) {
- printf("SGEMV_MK4: (%zu, %zu)\n", M, K);
- TensorShape A, B;
- A = TensorShape{M / 4, K / 4, 4, 4};
- B = TensorShape{K / 4, 1, 4};
- auto time = benchmarker.exec({A, B, {}}) / exec_times;
- auto computations = 2.f * M * K * 1e-6;
- auto perf = computations / time;
- printf("gemv mk4 fp32, Performance is %f Gflops\n", perf);
- };
-
- printf("warm up:\n");
- for (int i = 0; i < 50; i++) {
- benchmarker.set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_dtype(2, dtype::Float32())
- .set_display(false)
- .exec({{4, 256, 4, 4}, {256, 1, 4}, {}});
- }
-
- // run gemv mk4
- for (size_t M : {4, 64, 1024, 4096})
- for (size_t K : {128, 1024, 4096})
- run(M, K);
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_SGEMV_FP16) {
- int exec_times = 50;
- Benchmarker<MatrixMul> benchmarker(handle());
- benchmarker.set_times(exec_times);
- benchmarker.set_before_exec_callback(
- AlgoChecker<MatrixMul>("ARM_COMMON_F16_GEMV"));
-
- auto run = [&](size_t M, size_t K, size_t N) {
- printf("SGEMV_FP16: (%zu, %zu, %zu)\n", M, K, N);
- benchmarker.set_dtype(0, dtype::Float16())
- .set_dtype(1, dtype::Float16())
- .set_dtype(2, dtype::Float16());
- auto time = benchmarker.exec({{M, K}, {K, N}, {}}) / exec_times;
- auto computations = 2 * M * K * N * 1e-6;
- auto perf = computations / time;
- printf("gemv fp16, Performance is %f Gflops\n", perf);
- };
-
- printf("warm up:\n");
- for (int i = 0; i < 50; i++) {
- benchmarker.set_dtype(0, dtype::Float16())
- .set_dtype(1, dtype::Float16())
- .set_dtype(2, dtype::Float16())
- .set_display(false)
- .exec({{2, 1024}, {1024, 512}, {}});
- benchmarker.set_display(true);
- }
-
- // run gemv
- for (size_t M : {1, 2, 3, 4})
- for (size_t K : {1024, 1536, 2048})
- for (size_t N : {512, 1024})
- run(M, K, N);
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_SGEMM) {
- int exec_times = 10;
- Benchmarker<MatrixMul> benchmarker(handle());
- benchmarker.set_times(exec_times);
-
- float mod = 1000 * exec_times / 1e9;
- auto run = [&](size_t M, size_t K, size_t N) {
- float time = 1.f, perf = 1.f;
- printf("SGEMM: (%zu, %zu, %zu)\n", M, K, N);
- benchmarker.set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32());
- time = benchmarker.exec({{M, K}, {K, N}, {}});
- perf = 2.f * M * K * N / time * mod;
- printf("gemm, Performance is %f Gflops\n", perf);
- };
-
- printf("warm up:\n");
- for (int i = 0; i < 50; i++) {
- benchmarker.set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_display(false)
- .exec({{2, 1024}, {1024, 512}, {}});
- benchmarker.set_display(true);
- }
-
- run(256, 12 * 24, 256);
-
- //////////////////////// gemv //////////////////////////
- for (size_t M : {8, 64, 112, 256}) {
- for (size_t K : {8, 64, 112, 256}) {
- run(M, 1, K);
- }
- }
-
- //////////////////////// gemm //////////////////////////
- for (size_t M : {8, 64, 112, 256}) {
- for (size_t K : {8, 16, 32, 64, 112, 256}) {
- for (size_t N : {8, 64, 112, 256}) {
- run(M, N, K);
- }
- }
- }
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_MATRIX_MUL_INT8x8x32) {
- constexpr size_t RUNS = 50;
- param::MatrixMul param;
- Benchmarker<MatrixMul> benchmarker_int(handle());
- benchmarker_int.set_times(RUNS)
- .set_dtype(0, dtype::Int8{})
- .set_dtype(1, dtype::Int8{})
- .set_dtype(2, dtype::Int32{})
- .set_param(param)
- .set_display(false);
- Benchmarker<MatrixMul> benchmarker_float(handle());
- benchmarker_float.set_display(false).set_times(RUNS);
-
- auto run = [&](size_t M, size_t N, size_t K) {
- auto int_used = benchmarker_int.exec({{M, K}, {K, N}, {}}) / RUNS;
- auto float_used = benchmarker_float.exec({{M, K}, {K, N}, {}}) / RUNS;
- float computations = 2.f * M * K * N * 1e-6;
- printf("run: {%zu{M} %zu{K} %zu{N}} float: %f ms %f Gflops int: %f ms "
- "%f Gflops speedup: %f\n",
- M, K, N, float_used, computations / float_used, int_used,
- computations / int_used, float_used / int_used);
- };
-
- run(256, 12 * 24, 256);
-
- //////////////////////// gemv //////////////////////////
- for (size_t M : {8, 64, 112, 256}) {
- for (size_t K : {8, 64, 112, 256}) {
- run(M, 1, K);
- }
- }
-
- //////////////////////// gemm //////////////////////////
- for (size_t M : {8, 64, 112, 256}) {
- for (size_t K : {8, 16, 32, 64, 112, 256}) {
- for (size_t N : {8, 64, 112, 256}) {
- run(M, N, K);
- }
- }
- }
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_MATRIX_MUL_QUINT8) {
- constexpr size_t RUNS = 50;
- param::MatrixMul param;
- Benchmarker<MatrixMul> benchmarker_int(handle());
- benchmarker_int.set_times(RUNS)
- .set_dtype(0, dtype::Quantized8Asymm(1.2f, (uint8_t)127))
- .set_dtype(1, dtype::Quantized8Asymm(1.3f, (uint8_t)129))
- .set_dtype(2, {})
- .set_param(param)
- .set_display(false);
- Benchmarker<MatrixMul> benchmarker_float(handle());
- benchmarker_float.set_display(false).set_times(RUNS);
-
- auto run = [&](size_t M, size_t N, size_t K) {
- auto int_used = benchmarker_int.exec({{M, K}, {K, N}, {}}) / RUNS;
- auto float_used = benchmarker_float.exec({{M, K}, {K, N}, {}}) / RUNS;
- float computations = 2.f * M * K * N * 1e-6;
- printf("run: {%zu{M} %zu{K} %zu{N}} float: %f ms %f Gflops int: %f ms "
- "%f Gflops speedup: %f\n",
- M, K, N, float_used, computations / float_used, int_used,
- computations / int_used, float_used / int_used);
- };
-
- run(256, 12 * 24, 256);
-
- for (size_t M : {8, 64, 112, 256}) {
- for (size_t K : {8, 64, 112, 256}) {
- for (size_t N : {8, 64, 112, 256}) {
- run(M, N, K);
- }
- }
- }
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_TRANSPOSED_MATRIX_MUL_QUINT8) {
- constexpr size_t RUNS = 50;
- param::MatrixMul param;
- param.transposeA = param.transposeB = true;
- Benchmarker<MatrixMul> benchmarker_int(handle());
- benchmarker_int.set_times(RUNS)
- .set_dtype(0, dtype::Quantized8Asymm(1.2f, (uint8_t)127))
- .set_dtype(1, dtype::Quantized8Asymm(1.3f, (uint8_t)129))
- .set_dtype(2, {})
- .set_param(param)
- .set_display(false);
- Benchmarker<MatrixMul> benchmarker_float(handle());
- benchmarker_float.set_param(param).set_display(false).set_times(RUNS);
-
- auto run = [&](size_t M, size_t N, size_t K) {
- auto int_used = benchmarker_int.exec({{K, M}, {N, K}, {}}) / RUNS;
- auto float_used = benchmarker_float.exec({{K, M}, {N, K}, {}}) / RUNS;
- float computations = 2.f * M * K * N * 1e-6;
- printf("run: {%zu{M} %zu{K} %zu{N}} float: %f ms %f Gflops int: %f ms "
- "%f Gflops speedup: %f\n",
- M, K, N, float_used, computations / float_used, int_used,
- computations / int_used, float_used / int_used);
- };
-
- run(256, 12 * 24, 256);
-
- for (size_t M : {8, 64, 112, 256}) {
- for (size_t K : {8, 64, 112, 256}) {
- for (size_t N : {8, 64, 112, 256}) {
- run(M, N, K);
- }
- }
- }
- }
-
- #endif
-
- // vim: syntax=cpp.doxygen
|