|
- /**
- * \file dnn/test/arm_common/pooling_multi_thread.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- */
- #include <vector>
- #include "megdnn/dtype.h"
- #include "megdnn/opr_param_defs.h"
- #include "test/arm_common/fixture.h"
-
- #include "test/common/pooling.h"
- #include "test/common/checker.h"
- #include "test/common/benchmarker.h"
- #include "test/common/rng.h"
-
- namespace megdnn {
- namespace test {
-
- /*********************** mutli threads *********************************/
- TEST_F(ARM_COMMON_MULTI_THREADS, POOLING) {
- using Param = param::Pooling;
- for (size_t ih: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
- for (size_t iw: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
- for (size_t p: {1, 2})
- {
- Param param;
- param.mode = Param::Mode::MAX;
- param.window_h = param.window_w = 3;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = p;
- Checker<Pooling> checker(handle());
- checker.set_param(param).exec({{2, 3, ih, iw}, {}});
-
- param.mode = Param::Mode::AVERAGE;
- param.window_h = param.window_w = 3;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = p;
- checker.set_param(param).exec({{2, 3, ih, iw}, {}});
-
- param.mode = Param::Mode::MAX;
- param.window_h = param.window_w = 4;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = p;
- checker.set_param(param).exec({{2, 3, ih, iw}, {}});
-
- param.mode = Param::Mode::MAX;
- param.window_h = param.window_w = 5;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = p;
- if (ih + p * 2 >= 5 && iw + p * 2 >= 5)
- checker.set_param(param).exec({{2, 3, ih, iw}, {}});
- }
- }
-
- std::vector<std::pair<param::Pooling, TensorShapeArray>> get_nchw44_pool_args(
- size_t filter, size_t stride) {
- constexpr size_t ic_step = 4;
- std::vector<std::pair<param::Pooling, TensorShapeArray>> args;
-
- for (size_t n : {1, 2})
- for (size_t c : {4, 8})
- for (size_t ih : {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13})
- for (size_t iw : {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13})
- for (size_t ph : {0, 1, 2})
- for (size_t pw : {0, 1, 2})
- for (auto mode : {param::Pooling::Mode::MAX,
- param::Pooling::Mode::AVERAGE})
- if (ih + 2 * ph >= filter &&
- iw + 2 * pw >= filter && filter > ph &&
- filter > pw) {
- param::Pooling param;
- param.mode = mode;
- param.format =
- param::Pooling::Format::NCHW44;
- param.pad_h = ph;
- param.pad_w = pw;
- param.stride_h = param.stride_w = stride;
- param.window_h = param.window_w = filter;
- args.emplace_back(std::make_pair(
- param,
- TensorShapeArray{{n, c / ic_step,
- ih, iw, ic_step},
- {}}));
- }
- return args;
- }
-
- void run_pooling_check(
- Handle* handle,
- std::vector<std::pair<param::Pooling, TensorShapeArray>> args,
- bool is_int8) {
- Checker<Pooling> checker(handle);
- UniformIntRNG rng_int8{INT8_MIN >> 1, INT8_MAX >> 1};
- UniformIntRNG rng_fp32{-10, 10};
- if (is_int8) {
- checker.set_dtype(0, dtype::QuantizedS8(1.1f));
- checker.set_rng(0, &rng_int8);
- } else {
- checker.set_rng(0, &rng_fp32);
- }
- for (auto arg : args) {
- checker.set_param(arg.first).exec(arg.second);
- }
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_NCHW44_FP32) {
- for (auto filter : {2, 3, 4, 5})
- for (auto stride : {1, 2}) {
- run_pooling_check(handle(), get_nchw44_pool_args(filter, stride),
- false);
- }
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_W3x3_NCHW44)
- {
- // clang-format off
- for (size_t ih: {3, 5, 10})
- for (size_t iw: {3, 5, 7, 9, 15, 20})
- for (size_t ph: {0, 1, 2})
- for (size_t pw: {0, 1, 2})
- for(auto mode: {param::Pooling::Mode::MAX, param::Pooling::Mode::AVERAGE})
- if (ih+2*ph >= 3 && iw+2*pw >= 3)
- {
- UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
- Checker<Pooling> checker(handle());
- checker.set_dtype(0, dtype::QuantizedS8(1.1f));
- checker.set_rng(0,&rng);
-
- param::Pooling param;
- param.mode = mode;
- param.format = param::Pooling::Format::NCHW44;
- param.pad_h = ph;
- param.pad_w = pw;
- param.stride_h = param.stride_w = 1;
- param.window_h = param.window_w = 3;
- checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
-
- param.stride_h = param.stride_w = 2;
- checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
-
- }
- // clang-format on
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_W2x2_NCHW44)
- {
- // clang-format off
- for (size_t ih: {2, 5, 10, 17})
- for (size_t iw: {2, 6, 8, 16, 26})
- for (size_t ph: {0, 1})
- for (size_t pw: {0, 1})
- for(auto mode: {param::Pooling::Mode::MAX,param::Pooling::Mode::AVERAGE})
- if (ih+2*ph >= 2 && iw+2*pw >= 2)
- {
- UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
- Checker<Pooling> checker(handle());
- checker.set_dtype(0, dtype::QuantizedS8(1.1f));
- checker.set_rng(0,&rng);
-
- param::Pooling param;
- param.mode = mode;
- param.format = param::Pooling::Format::NCHW44;
- param.pad_h = ph;
- param.pad_w = pw;
- param.stride_h = param.stride_w = 1;
- param.window_h = param.window_w = 2;
- checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
-
- param.stride_h = param.stride_w = 2;
- checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
- }
- // clang-format on
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_W4x4_NCHW44)
- {
- // clang-format off
- for (size_t ih: {4, 10, 18, 25, 30})
- for (size_t iw: {4, 12, 17, 20, 25})
- for (size_t ph: {0, 1, 2})
- for (size_t pw: {0, 1, 2})
- for(auto mode: {param::Pooling::Mode::MAX,param::Pooling::Mode::AVERAGE})
- if (ih+2*ph >= 4 && iw+2*pw >= 4)
- {
- UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
- Checker<Pooling> checker(handle());
- checker.set_dtype(0, dtype::QuantizedS8(1.1f));
- checker.set_rng(0,&rng);
-
- param::Pooling param;
- param.mode = mode;
- param.format = param::Pooling::Format::NCHW44;
- param.pad_h = ph;
- param.pad_w = pw;
- param.stride_h = param.stride_w = 1;
- param.window_h = param.window_w = 4;
- checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
-
- param.stride_h = param.stride_w = 2;
- checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
- }
- // clang-format on
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_W5x5_NCHW44)
- {
- // clang-format off
- for (size_t ih: {5, 9, 19, 20, 39})
- for (size_t iw: {5, 12, 23, 27, 39})
- for (size_t ph: {0, 1, 2})
- for (size_t pw: {0, 1, 2})
- for(auto mode: {param::Pooling::Mode::MAX,param::Pooling::Mode::AVERAGE})
- if (ih+2*ph >= 5 && iw+2*pw >= 5)
- {
- UniformIntRNG rng{INT8_MIN >> 1, INT8_MAX >> 1};
- Checker<Pooling> checker(handle());
- checker.set_dtype(0, dtype::QuantizedS8(1.1f));
- checker.set_rng(0,&rng);
-
- param::Pooling param;
- param.mode = mode;
- param.format = param::Pooling::Format::NCHW44;
- param.pad_h = ph;
- param.pad_w = pw;
- param.stride_h = param.stride_w = 1;
- param.window_h = param.window_w = 5;
- checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
-
- param.stride_h = param.stride_w = 2;
- checker.set_param(param).exec(TensorShapeArray{{2, 2, ih, iw, 4}, {}});
-
- }
- // clang-format on
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_INT8_W3x3_S2x2)
- {
- for (size_t ih: {2, 3, 7, 13, 52, 53, 54, 55})
- for (size_t iw: {2, 3, 6, 14, 53, 54, 55, 56})
- for (size_t ph: {0, 1, 2})
- for (size_t pw: {0, 1, 2})
- if (ih+2*ph >= 3 && iw+2*pw >= 3)
- {
- Checker<Pooling> checker(handle());
- checker.set_dtype(0, dtype::Int8());
- param::Pooling param;
- param.mode = param::Pooling::Mode::MAX;
- param.pad_h = ph;
- param.pad_w = pw;
- param.stride_h = param.stride_w = 2;
- param.window_h = param.window_w = 3;
- checker.set_param(param).exec(TensorShapeArray{
- {2, 3, ih, iw}, {}});
- }
- }
-
- TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_INT8_W2x2_S2x2)
- {
- for (size_t ih: {2, 3, 7, 13, 52, 53, 54, 55})
- for (size_t iw: {2, 3, 6, 14, 53, 54, 55, 56})
- for (size_t ph: {0, 1})
- for (size_t pw: {0, 1})
- if (ih+2*ph >= 3 && iw+2*pw >= 3)
- {
- Checker<Pooling> checker(handle());
- checker.set_dtype(0, dtype::Int8());
- param::Pooling param;
- param.mode = param::Pooling::Mode::MAX;
- param.pad_h = ph;
- param.pad_w = pw;
- param.stride_h = param.stride_w = 2;
- param.window_h = param.window_w = 2;
- checker.set_param(param).exec(TensorShapeArray{
- {2, 3, ih, iw}, {}});
- }
- }
-
- #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_FP16) {
- Checker<Pooling> checker(handle());
- checker.set_dtype(0, dtype::Float16{})
- .set_dtype(1, dtype::Float16{})
- .set_epsilon(3e-3);
-
- using Param = param::Pooling;
- for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23})
- for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23})
- for (auto mode : {Param::Mode::AVERAGE, Param::Mode::MAX}) {
- for (size_t window : {2, 3}) {
- Param param;
- param.mode = mode;
- param.window_h = param.window_w = window;
- param.stride_h = param.stride_w = 1;
- param.pad_h = param.pad_w = window / 2;
- //! test for SH == 1 && SW == 1 && FH == FW (FH == 2 || FH
- //! == 3)
- checker.set_param(param).exec({{2, 3, ih, iw}, {}});
-
- //! test for SH = SW = 2 && FH = FW = 2
- param.stride_h = param.stride_w = 2;
- checker.set_param(param).exec({{2, 3, ih, iw}, {}});
- }
- }
-
- //! test for SH == 2 && SW == 2 && FH == FW == 3 max pooling
- for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55})
- for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56})
- for (size_t ph : {0, 1, 2})
- for (size_t pw : {0, 1, 2})
- if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) {
- param::Pooling param;
- param.mode = param::Pooling::Mode::MAX;
- param.pad_h = ph;
- param.pad_w = pw;
- param.stride_h = param.stride_w = 2;
- param.window_h = param.window_w = 3;
- checker.set_param(param).exec(
- TensorShapeArray{{2, 3, ih, iw}, {}});
- }
-
- //! test for SH == 2 && SW == 2 && FH = FW = 4 max pooling
- for (size_t ih :
- {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
- for (size_t iw :
- {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
- for (size_t p : {1, 2}) {
- Param param;
- param.mode = Param::Mode::MAX;
- param.window_h = param.window_w = 4;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = p;
- checker.set_param(param).exec({{2, 3, ih, iw}, {}});
- }
-
- //! test for SH == 2 && SW == 2 && FH = FW = 5 max pooling
- for (size_t ih :
- {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
- for (size_t iw :
- {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
- for (size_t p : {1, 2}) {
- Param param;
- param.mode = Param::Mode::MAX;
- param.window_h = param.window_w = 5;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = p;
- checker.set_param(param).exec({{2, 3, ih, iw}, {}});
- }
- }
- #endif
-
- TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_QUANTIZED) {
- Checker<Pooling> checker(handle());
- UniformIntRNG rng1{INT8_MIN >> 1, INT8_MAX >> 1};
- UniformIntRNG rng2{0, UINT8_MAX >> 1};
-
- using Param = param::Pooling;
-
- for (auto type : std::vector<DType>{
- dtype::QuantizedS8(1.1f),
- dtype::Quantized8Asymm(1.1f, static_cast<uint8_t>(3))}) {
- if (type.enumv() == DTypeEnum::QuantizedS8) {
- checker.set_rng(0, &rng1);
- } else {
- megdnn_assert(type.enumv() == DTypeEnum::Quantized8Asymm);
- checker.set_rng(0, &rng2);
- }
- for (size_t ih : {2, 3, 5, 7, 11, 13, 17, 19, 23, 33, 49})
- for (size_t iw : {2, 3, 5, 7, 11, 13, 17, 19, 23, 33, 49})
- for (auto mode : {Param::Mode::AVERAGE, Param::Mode::MAX}) {
- for (size_t window : {2, 3}) {
- Param param;
- param.mode = mode;
- param.window_h = param.window_w = window;
- param.stride_h = param.stride_w = 1;
- param.pad_h = param.pad_w = window / 2;
- //! test for SH == 1 && SW == 1 && FH == FW (FH == 2 ||
- //! FH
- //! == 3)
- checker.set_param(param).exec({{2, 3, ih, iw}, {}});
-
- //! test for SH = SW = 2 && FH = FW = 2
- param.stride_h = param.stride_w = 2;
- checker.set_param(param).exec({{2, 3, ih, iw}, {}});
- }
- }
-
- //! test for SH == 2 && SW == 2 && FH == FW == 3 max pooling
- for (size_t ih : {2, 3, 7, 13, 52, 53, 54, 55})
- for (size_t iw : {2, 3, 6, 14, 53, 54, 55, 56})
- for (size_t ph : {0, 1, 2})
- for (size_t pw : {0, 1, 2})
- if (ih + 2 * ph >= 3 && iw + 2 * pw >= 3) {
- param::Pooling param;
- param.mode = param::Pooling::Mode::MAX;
- param.pad_h = ph;
- param.pad_w = pw;
- param.window_h = param.window_w = 3;
- param.stride_h = param.stride_w = 2;
- checker.set_param(param).exec(
- TensorShapeArray{{2, 3, ih, iw}, {}});
- }
-
- //! test for SH == 2 && SW == 2 && FH == FW == 4 max pooling
- for (size_t ih :
- {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
- for (size_t iw :
- {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
- for (size_t p : {1, 2}) {
- Param param;
- param.mode = Param::Mode::MAX;
- param.window_h = param.window_w = 4;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = p;
- checker.set_param(param).exec({{2, 3, ih, iw}, {}});
- }
-
- //! test for SH == 2 && SW == 2 && FH == FW == 5 max pooling
- for (size_t ih :
- {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
- for (size_t iw :
- {3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
- for (size_t p : {1, 2}) {
- Param param;
- param.mode = Param::Mode::MAX;
- param.window_h = param.window_w = 5;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = p;
- checker.set_param(param).exec({{2, 3, ih, iw}, {}});
- }
- }
- }
- TEST_F(ARM_COMMON_MULTI_THREADS, POOLING_FALLBACK) {
- using Param = param::Pooling;
- for (size_t ih: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
- for (size_t iw: {2, 3, 5, 7, 11, 13, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30})
- for (size_t p: {1, 2})
- {
- Param param;
- param.mode = Param::Mode::MAX;
- param.window_h = param.window_w = 3;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = p;
- Checker<Pooling> checker(handle());
- checker.set_param(param).exec({{2, 3, ih, iw}, {}});
- }
- }
-
- #if MEGDNN_WITH_BENCHMARK
- namespace {
- template <typename Opr>
- void benchmark_impl(const typename Opr::Param& param,
- std::vector<SmallVector<TensorShape>> shapes, size_t RUNS,
- TaskExecutorConfig&& multi_thread_config,
- TaskExecutorConfig&& single_thread_config,
- DType data_type) {
- std::vector<float> multi_thread_times, single_thread_times;
- {
- auto multi_thread_hanle =
- create_cpu_handle(0, true, &multi_thread_config);
- auto benchmarker = Benchmarker<Opr>(multi_thread_hanle.get());
- benchmarker.set_times(RUNS).set_display(false).set_param(param);
- benchmarker.set_dtype(0, data_type);
- for (auto shape : shapes) {
- multi_thread_times.push_back(benchmarker.exec(shape) / RUNS);
- }
- }
- {
- auto single_thread_handle =
- create_cpu_handle(0, true, &single_thread_config);
- auto benchmarker = Benchmarker<Opr>(single_thread_handle.get());
- benchmarker.set_times(RUNS).set_display(false).set_param(param);
- benchmarker.set_dtype(0, data_type);
- for (auto shape : shapes) {
- single_thread_times.push_back(benchmarker.exec(shape) / RUNS);
- }
- }
- printf("Benchmark : Multi threads %zu, ", multi_thread_config.nr_thread);
- printf("core_ids:");
- for (size_t i = 0; i < multi_thread_config.affinity_core_set.size(); i++) {
- printf("%zu ", multi_thread_config.affinity_core_set[i]);
- }
- printf(", Single thread core_id %zu\n",
- single_thread_config.affinity_core_set[0]);
- for (size_t i = 0; i < shapes.size(); i++) {
- auto shape = shapes[i];
- printf("Case: ");
- for (auto sh : shape)
- printf("%s ", sh.to_string().c_str());
- printf("%zu threads time: %f,\n single thread time: "
- "%f. spead up = %f, speedup/cores=%f\n",
- multi_thread_config.nr_thread, multi_thread_times[i],
- single_thread_times[i],
- single_thread_times[i] / multi_thread_times[i],
- single_thread_times[i] / multi_thread_times[i] /
- multi_thread_config.nr_thread);
- }
- }
- } // namespace
-
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_POOLING) {
- constexpr size_t RUNS = 50;
-
- using Param = param::Pooling;
- Param param;
- param.window_h = param.window_w = 3;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = 1;
-
- std::vector<SmallVector<TensorShape>> shapes;
-
- shapes.push_back({{32, 32, 215, 215}, {}});
- shapes.push_back({{32, 32, 128, 128}, {}});
- shapes.push_back({{8, 256, 100, 100}, {}});
- shapes.push_back({{1, 256, 100, 100}, {}});
- shapes.push_back({{1, 32, 100, 100}, {}});
- shapes.push_back({{1, 256, 80, 80}, {}});
- shapes.push_back({{1, 256, 60, 60}, {}});
- shapes.push_back({{1, 256, 30, 30}, {}});
-
- param.window_h = param.window_w = 3;
- param.stride_h = param.stride_w = 2;
- param.pad_h = param.pad_w = 1;
- printf("Benchmark POOLING kernel:%d*%d stride:%d,mode %d\n", param.window_h,
- param.window_w, param.stride_h, static_cast<int>(param.mode));
- benchmark_impl<Pooling>(param, shapes, RUNS, {4, {0, 1, 2, 3}}, {1, {0}}, dtype::Float32());
- benchmark_impl<Pooling>(param, shapes, RUNS, {4, {4, 5, 6, 7}}, {1, {4}}, dtype::Float32());
- benchmark_impl<Pooling>(param, shapes, RUNS, {2, {0, 1}}, {1, {0}}, dtype::Float32());
- }
-
- TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_POOLING_NCHW44) {
- constexpr size_t RUNS = 50;
-
- using Param = param::Pooling;
- Param param;
- param.pad_h = param.pad_w = 0;
- param.mode = Param::Mode::MAX;
- std::vector<SmallVector<TensorShape>> shapes;
- std::vector<std::vector<size_t>> filter_and_stride = {
- {2, 1}, {2, 2}, {3, 1}, {3, 2}, {4, 1}, {4, 2}, {5, 1}, {5, 2}};
-
- for (auto mode :
- {param::Pooling::Mode::MAX, param::Pooling::Mode::AVERAGE}) {
- for (auto filter : filter_and_stride) {
- shapes.push_back({{1, 32 * 4, 215, 215}, {}});
- shapes.push_back({{1, 32 * 4, 128, 128}, {}});
- shapes.push_back({{1, 16 * 4, 56, 56}, {}});
-
- param.mode = mode;
- param.window_h = param.window_w = filter[0];
- param.stride_h = param.stride_w = filter[1];
- param.format = Param::Format::NCHW;
- printf("NCHW Benchmark POOLING kernel:%d*%d stride:%d,mode %d\n",
- param.window_h, param.window_h, param.stride_h,
- static_cast<int>(param.mode));
- benchmark_impl<Pooling>(param, shapes, RUNS, {4, {4, 5, 6, 7}},
- {1, {4}}, dtype::QuantizedS8(1.1f));
- shapes.clear();
- shapes.push_back({{1, 32, 215, 215, 4}, {}});
- shapes.push_back({{1, 32, 128, 128, 4}, {}});
- shapes.push_back({{1, 16, 56, 56, 4}, {}});
-
- param.format = Param::Format::NCHW44;
- printf("NCHW44 Benchmark POOLING kernel:%d*%d stride:%d,mode %d\n",
- param.window_h, param.window_w, param.stride_h,
- static_cast<int>(param.mode));
- benchmark_impl<Pooling>(param, shapes, RUNS, {4, {4, 5, 6, 7}},
- {1, {4}}, dtype::QuantizedS8(1.1f));
- shapes.clear();
- }
- }
- }
- #endif
-
- } // namespace test
- } // namespace megdnn
- // vim: syntax=cpp.doxygen
|