|
- # -*- coding: utf-8 -*-
- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- #
- # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-
- import builtins
- import collections
- import copy
- import inspect
- import re
- from typing import Callable, Dict, List
-
- from ...core._imperative_rt import OpDef
- from ...core._imperative_rt.core2 import Tensor as RawTensor
- from ...core._imperative_rt.core2 import apply, set_module_tracing, unset_module_tracing
- from ...core.ops.special import Const
- from ...module import Module
- from ...tensor import Parameter, Tensor
- from .module_tracer import active_module_tracer, module_tracer
- from .node import ModuleNode, Node, NodeMixin, TensorNode
- from .pytree import ArgsIndex, TreeDef, tree_flatten
-
-
- def rstrip(s: str, __chars: str):
- __chars = re.escape(__chars)
- s = re.sub(r"^(?P<left>.*?)(?:%s)+$" % __chars, "\g<left>", s)
- return s
-
-
- def lstrip(s: str, __chars: str):
- __chars = re.escape(__chars)
- s = re.sub(r"^(?:%s)+(?P<right>.*)$" % __chars, "\g<right>", s)
- return s
-
-
- def strip(s: str, __chars: str):
- s = lstrip(rstrip(s, __chars), __chars)
- return s
-
-
- class Expr:
- """
- ``Expr`` represents the operations(i.e. CallMethod, CallFunction, Apply, GetAttr, Input, Constant) on ``Node``.
- """
-
- __total_id = 0
- inputs = None # type: List[Node]
- outputs = None # type: List[Node]
- const_val = None # type: List[Any]
- arg_def = None # type: TreeDef
- out_def = None # type: TreeDef
- _top_graph = None # type: weakref.ReferenceType
-
- def __init__(self) -> None:
- self._id = Expr.__total_id
- Expr.__total_id += 1
- self._disable_remove = False
-
- def enable_remove(self):
- self._disable_remove = False
-
- def disable_remove(self):
- self._disable_remove = True
-
- def add_inputs(self, vals):
- if not isinstance(vals, collections.abc.Sequence):
- vals = (vals,)
- for val in vals:
- node = NodeMixin.get(val, None)
- if isinstance(node, (TensorNode, ModuleNode)):
- self.inputs.append(node)
- node.users.append(self)
- else:
- assert node is None
- idx = len(self.inputs) + len(self.const_val)
- self.const_val.append((idx, val))
-
- def add_outputs(self, outputs):
- self.outputs = []
- if outputs is not None:
- if not isinstance(outputs, collections.Sequence):
- outputs = (outputs,)
-
- name = None
- if isinstance(self, CallMethod):
- name = self.inputs[0]._name
- assert name is not None
- name = rstrip(name, "_out")
- if self.method == "__call__":
- name += "_out"
- else:
- strip_method = strip(self.method, "_")
- name = "%s_out" % strip_method
- elif isinstance(self, CallFunction):
- name = self.func.__name__ + "_out"
- elif isinstance(self, Apply):
- name = str(self.opdef).lower() + "_out"
-
- for i in outputs:
- assert isinstance(i, RawTensor)
- o_name = (
- active_module_tracer().current_scope()._create_unique_name(name)
- )
- self.outputs.append(
- NodeMixin.get_wrapped_type(i)(expr=self, name=o_name)
- )
-
- for i, node in zip(outputs, self.outputs,):
- NodeMixin.wrap_safe(i, node)
-
- def unflatten_args(self, inputs):
- if self.arg_def is not None:
- inputs = list(inputs)
- for idx, val in self.const_val:
- inputs.insert(idx, val)
- args, kwargs = self.arg_def.unflatten(inputs)
- return args, kwargs
- else:
- return inputs, {}
-
- def _replace_nodes(self, repl_dict: Dict[Node, Node], nodes: List[Node]):
- while repl_dict:
- node, repl_node = repl_dict.popitem()
- assert type(node) == type(repl_node)
- assert node in nodes
- index = nodes.index(node)
- nodes[index] = repl_node
- repl_node.users.append(self)
- node.users.pop(self)
-
- def replace_inputs(self, repl_dict: Dict[Node, Node]):
- self._replace_nodes(repl_dict, self.inputs)
-
- def replace_outputs(self, repl_dict: Dict[Node, Node]):
- self._replace_nodes(repl_dict, self.outputs)
-
- @property
- def kwargs(self):
- _, kwargs = self.unflatten_args(self.inputs)
- return kwargs
-
- @property
- def args(self):
- args, _ = self.unflatten_args(self.inputs)
- return args
-
- @property
- def top_graph(self):
- if self._top_graph:
- return self._top_graph()
- return None
-
-
- # expr: None (i.e. fake expression which is used to mark input)
- class Input(Expr):
- name = None
-
- def __init__(self, name=None, type=None):
- super().__init__()
- self.inputs = []
- node_cls = type if type else Node
- self.outputs = [
- node_cls(self, name=name),
- ]
- self.name = name
-
- @classmethod
- def make(cls, *args, **kwargs):
- expr = cls(*args, **kwargs)
- oup_node = expr.outputs[0]
- name = (
- active_module_tracer().current_scope()._create_unique_name(oup_node._name)
- )
- oup_node._name = name
- active_module_tracer().current_scope().add_input(oup_node)
- return expr.outputs[0]
-
- def __repr__(self):
- return "%{}:\t{} = Input({})".format(self._id, self.outputs[0], self.name)
-
-
- # expr: outputs = getattr(inputs[0], self.name)
- class GetAttr(Expr):
- name = None
-
- def __init__(self, module, name, type=None):
- super().__init__()
- assert isinstance(module, ModuleNode)
- self.inputs = [
- module,
- ]
- module.users.append(self)
- self.name = name
- node_cls = type if type else Node
- self.outputs = [
- node_cls(self, name=name),
- ]
-
- @classmethod
- def make(cls, *args, **kwargs):
- expr = cls(*args, **kwargs)
- module = expr.inputs[0]
- oup_name = expr.name
- while module._name != "self":
- oup_name = module._name + "_" + oup_name
- module = module.expr.inputs[0]
- oup_name = active_module_tracer().current_scope()._create_unique_name(oup_name)
- expr.outputs[0]._name = oup_name
- active_module_tracer().current_scope().insert(expr)
- return expr.outputs[0]
-
- def interpret(self, *inputs):
- return (getattr(inputs[0], self.name),)
-
- def __repr__(self):
- out_type = "Tensor"
- if isinstance(self.outputs[0], ModuleNode):
- out_type = self.outputs[0].module_type.__name__
- return '%{}:\t{} = getattr({}, "{}") -> ({})'.format(
- self._id, self.outputs[0], self.inputs[0], self.name, out_type
- )
-
-
- # expr: outputs = inputs[0].__call__(*inputs[1:])
- class CallMethod(Expr):
- def __init__(self, node, method="__call__"):
- super().__init__()
- if isinstance(node, type):
- assert issubclass(node, Tensor)
- cls = Parameter if issubclass(node, Parameter) else Tensor
-
- self.inputs = []
- self.const_val = [(0, cls)]
- else:
- assert isinstance(node, (TensorNode, ModuleNode))
- node.users.append(self)
- self.inputs = [
- node,
- ]
- self.const_val = []
- self.method = method
-
- @classmethod
- def make(cls, *args, **kwargs):
- expr = cls(*args, **kwargs)
- active_module_tracer().current_scope().insert(expr)
- return expr
-
- @property
- def graph(self):
- if isinstance(self.inputs[0], ModuleNode):
- m_node = self.inputs[0]
- if (
- hasattr(m_node.owner, "argdef_graph_map")
- and m_node.owner.argdef_graph_map
- ):
- assert self.arg_def in m_node.owner.argdef_graph_map
- return m_node.owner.argdef_graph_map[self.arg_def]
- return None
-
- def interpret(self, *inputs):
- args, kwargs = self.unflatten_args(inputs)
- obj = args[0]
- meth = getattr(obj, self.method)
- if inspect.ismethod(meth):
- args = args[1:]
- outputs = getattr(obj, self.method)(*args, **kwargs)
- if self.method == "__setitem__":
- outputs = obj
- if outputs is None:
- return outputs
- outputs, _ = tree_flatten(outputs, is_leaf=lambda x: isinstance(x, RawTensor))
- return outputs
-
- def __repr__(self):
- args = ", ".join(str(i) for i in self.args[1:])
- kwargs = ", ".join("{}={}".format(k, v) for k, v in self.kwargs.items())
- outputs = self.outputs
- if self.out_def:
- outputs = self.out_def.unflatten(outputs)
- method = ".%s" % self.method
- if method == ".__call__":
- method = ""
- return "%{}:\t{}{}{}({})".format(
- self._id,
- str(outputs) + " = " if outputs else "",
- self.args[0],
- method,
- ", ".join([args, kwargs]),
- )
-
-
- # expr: outputs = apply(self.opdef, *inputs)
- class Apply(Expr):
- opdef = None
-
- def __init__(self, opdef):
- super().__init__()
- assert isinstance(opdef, OpDef)
- self.opdef = opdef
- self.inputs = []
-
- @classmethod
- def make(cls, *args, **kwargs):
- expr = cls(*args, **kwargs)
- active_module_tracer().current_scope().insert(expr)
- return expr
-
- def interpret(self, *inputs):
- return apply(self.opdef, *inputs)
-
- def __repr__(self):
- return "%{}:\t{} = {}({})".format(
- self._id,
- ", ".join(str(i) for i in self.outputs),
- self.opdef,
- ", ".join(str(i) for i in self.inputs),
- )
-
- @classmethod
- def apply_module_trace_hook(cls, opdef, *inputs):
- for i in inputs:
- node = NodeMixin.get(i, None)
- if node is None: # capture as constant
- NodeMixin.wrap_safe(i, Constant.make(i))
- apply_node = cls.make(opdef)
- apply_node.add_inputs(inputs)
- assert not apply_node.const_val
-
- unset_module_tracing()
- outputs = apply(opdef, *inputs)
- set_module_tracing()
-
- apply_node.add_outputs(outputs)
- for n, v in zip(apply_node.outputs, outputs):
- NodeMixin.wrap_safe(v, n)
- return list(outputs)
-
-
- class CallFunction(Expr):
- def __init__(self, func):
- super().__init__()
- assert isinstance(func, Callable)
- self.func = func
- self.const_val = []
- self.inputs = []
-
- @classmethod
- def make(cls, *args, **kwargs):
- expr = cls(*args, **kwargs)
- active_module_tracer().current_scope().insert(expr)
- return expr
-
- def interpret(self, *inputs):
- args, kwargs = self.unflatten_args(inputs)
- outputs = self.func(*args, **kwargs)
- if outputs is None:
- return outputs
- outputs, _ = tree_flatten(outputs, is_leaf=lambda x: isinstance(x, RawTensor))
- return outputs
-
- def __repr__(self):
- args = ", ".join(str(i) for i in self.args)
- kwargs = ", ".join("{}={}".format(k, v) for k, v in self.kwargs.items())
- outputs = self.outputs
- if self.out_def:
- outputs = self.out_def.unflatten(outputs)
- return "%{}:\t{}{}({})".format(
- self._id,
- str(outputs) + " = " if outputs else "",
- self.func.__module__.rsplit(".")[-1] + "." + self.func.__name__,
- ", ".join([args, kwargs]),
- )
-
-
- # expr outputs = self.value
- class Constant(Expr):
- value = None
- # TODO: constant cache to reduce the size of dumped model
- _constant_cache = {}
-
- def __init__(self, c, name=None):
- super().__init__()
- assert isinstance(c, (RawTensor, Module))
- if isinstance(c, Module):
- assert module_tracer.is_builtin(c)
- self.value = c
- self.name = name
- self.inputs = []
- node_cls = NodeMixin.get_wrapped_type(c)
- self.outputs = [
- node_cls(self, name=name),
- ]
-
- @classmethod
- def make(cls, *args, **kwargs):
- expr = cls(*args, **kwargs)
- name = "const_module" if isinstance(expr.value, Module) else "const_tensor"
- name = active_module_tracer().current_scope()._create_unique_name(name)
- expr.outputs[0]._name = name
- active_module_tracer().current_scope().insert(expr)
- return expr.outputs[0]
-
- def interpret(self, *inputs):
- if isinstance(self.value, RawTensor):
- return Const(self.value.numpy())()
- return (self.value,)
-
- def __repr__(self):
- name = self.name
- if name is None:
- name = type(self.value)
- node_type = "Module"
- if isinstance(self.outputs[0], TensorNode):
- node_type = "Tensor"
- return "%{}:\t{} = Constant({}) -> ({})".format(
- self._id, self.outputs[0], name, node_type
- )
-
- def __getstate__(self):
- state = self.__dict__.copy()
- if isinstance(self.value, RawTensor):
- state["value"] = Tensor(self.value)
- return state
|