|
- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- #
- # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- import numpy as np
- import pytest
-
- from megengine import Parameter, Tensor
- from megengine import module as Float
- from megengine.module import qat as QAT
- from megengine.module import quantized as Q
- from megengine.quantization import (
- min_max_fakequant_qconfig,
- passive_qconfig,
- tqt_qconfig,
- )
- from megengine.quantization.fake_quant import TQT, FakeQuantize
- from megengine.quantization.observer import MinMaxObserver, PassiveObserver
- from megengine.quantization.quantize import (
- _get_quantable_module_names,
- apply_easy_quant,
- disable_fake_quant,
- disable_observer,
- enable_fake_quant,
- enable_observer,
- propagate_qconfig,
- quantize,
- quantize_qat,
- reset_qconfig,
- )
-
-
- class FloatNet(Float.Module):
- def __init__(self):
- super().__init__()
- self.quant = Float.QuantStub()
- self.linear = Float.Linear(3, 3)
- self.dequant = Float.DequantStub()
- self.linear.bias[...] = Parameter(np.random.rand(3))
-
- def forward(self, x):
- x = self.quant(x)
- x = self.linear(x)
- x = self.dequant(x)
- return x
-
-
- class QATNet(Float.Module):
- def __init__(self):
- super().__init__()
- self.quant = QAT.QuantStub()
- self.linear = QAT.Linear(3, 3)
- self.dequant = QAT.DequantStub()
- self.linear.bias[...] = Parameter(np.random.rand(3))
-
- def forward(self, x):
- x = self.quant(x)
- x = self.linear(x)
- x = self.dequant(x)
- return x
-
-
- def test_propagate_qconfig():
- net = QATNet()
- propagate_qconfig(net, min_max_fakequant_qconfig)
- assert all(
- [
- net.quant.weight_observer is None,
- net.quant.weight_fake_quant is None,
- isinstance(net.quant.act_observer, MinMaxObserver),
- isinstance(net.quant.act_fake_quant, FakeQuantize),
- isinstance(net.linear.weight_observer, MinMaxObserver),
- isinstance(net.linear.weight_fake_quant, FakeQuantize),
- isinstance(net.linear.act_observer, MinMaxObserver),
- isinstance(net.linear.act_fake_quant, FakeQuantize),
- net.dequant.weight_observer is None,
- net.dequant.weight_fake_quant is None,
- net.dequant.act_observer is None,
- net.dequant.act_observer is None,
- ]
- )
-
-
- def init_qat_net():
- net = QATNet()
- propagate_qconfig(net, min_max_fakequant_qconfig)
- min_val = np.random.randint(-127, 0, size=(3,))
- max_val = np.random.randint(1, 127, size=(3,))
- net.quant.act_observer.min_val[...] = Parameter(min_val[0])
- net.quant.act_observer.max_val[...] = Parameter(max_val[0])
- net.linear.weight_observer.min_val[...] = Parameter(min_val[1])
- net.linear.weight_observer.max_val[...] = Parameter(max_val[1])
- net.linear.act_observer.min_val[...] = Parameter(min_val[2])
- net.linear.act_observer.max_val[...] = Parameter(max_val[2])
- return net
-
-
- def test_reset_qconfig():
- qat_net = init_qat_net()
- new_qat_net = reset_qconfig(qat_net, passive_qconfig)
- assert (
- new_qat_net.linear.get_weight_qparams() == qat_net.linear.get_weight_qparams()
- )
- assert (
- new_qat_net.linear.get_activation_qparams()
- == qat_net.linear.get_activation_qparams()
- )
-
-
- def test_enable_and_disable_observer():
- net = init_qat_net()
- enable_observer(net)
- assert net.quant.act_observer.enabled is True
- assert net.linear.weight_observer.enabled is True
- assert net.linear.act_observer.enabled is True
- disable_observer(net)
- assert net.quant.act_observer.enabled is False
- assert net.linear.weight_observer.enabled is False
- assert net.linear.act_observer.enabled is False
-
-
- def test_enable_and_disable_fake_quant():
- net = init_qat_net()
- disable_fake_quant(net)
- assert net.quant.act_fake_quant.enabled is False
- assert net.linear.weight_fake_quant.enabled is False
- assert net.linear.act_fake_quant.enabled is False
- enable_fake_quant(net)
- assert net.quant.act_fake_quant.enabled is True
- assert net.linear.weight_fake_quant.enabled is True
- assert net.linear.act_fake_quant.enabled is True
-
-
- def init_observer(module, data):
- enable_observer(module)
- disable_fake_quant(module)
- module(data)
- disable_observer(module)
- enable_fake_quant(module)
-
-
- def test_enable_and_disable_all():
- x = Tensor(np.random.randint(1, 10, size=(3, 3)).astype(np.float32))
- net = FloatNet()
- y1 = net(x).numpy()
- net = quantize_qat(net, min_max_fakequant_qconfig)
-
- init_observer(net, x)
-
- y2 = net(x).numpy()
- disable_fake_quant(net)
- y3 = net(x).numpy()
- enable_fake_quant(net)
- y4 = net(x).numpy()
- np.testing.assert_allclose(y1, y3)
- np.testing.assert_allclose(y2, y4)
- with pytest.raises(AssertionError):
- np.testing.assert_allclose(y2, y3)
-
-
- def test_quantize_qat():
- net = FloatNet()
- qat_net = quantize_qat(net, inplace=False, qconfig=min_max_fakequant_qconfig)
- assert isinstance(qat_net.quant, QAT.QuantStub)
- assert isinstance(qat_net.linear, QAT.Linear)
- assert isinstance(qat_net.dequant, QAT.DequantStub)
-
-
- def test_quantize():
- qat_net = init_qat_net()
- q_net = quantize(qat_net, inplace=False)
- assert isinstance(q_net.quant, Q.QuantStub)
- assert isinstance(q_net.linear, Q.Linear)
- assert isinstance(q_net.dequant, Q.DequantStub)
-
-
- def test_apply_easy_quant():
- qat_net = init_qat_net()
- data = Tensor(np.random.rand(2, 3, 3, 3), dtype=np.float32)
- eq_net = reset_qconfig(qat_net, passive_qconfig, inplace=False)
- apply_easy_quant(eq_net, data, 0.9, 1.1, 10)
- assert isinstance(eq_net.quant.act_observer, PassiveObserver)
- assert isinstance(eq_net.linear.weight_observer, PassiveObserver)
- assert isinstance(eq_net.linear.act_observer, PassiveObserver)
- assert eq_net.dequant.act_observer is None
-
-
- def test_apply_tqt():
- qat_net = init_qat_net()
- tqt_net = reset_qconfig(qat_net, tqt_qconfig, inplace=False)
- assert isinstance(tqt_net.quant.act_fake_quant, TQT)
- assert isinstance(tqt_net.linear.weight_fake_quant, TQT)
- assert isinstance(tqt_net.linear.act_fake_quant, TQT)
- assert tqt_net.dequant.act_fake_quant is None
-
-
- def test_get_quantable_module_names():
- # need to make sure names from Quantized and QAT are the same
- def _get_qat_module_names():
- def is_qat(key: str):
- value = getattr(QAT, key)
- return (
- isinstance(value, type)
- and issubclass(value, QAT.QATModule)
- and value != QAT.QATModule
- )
-
- # source should have all quantable modules' names
- quantable_module_names = [key for key in dir(QAT) if is_qat(key)]
- return quantable_module_names
-
- qat_module_names = _get_qat_module_names()
- quantized_module_names = _get_quantable_module_names()
- assert set(qat_module_names) == set(quantized_module_names)
-
- for key in qat_module_names:
- value = getattr(Float, key)
- assert (
- isinstance(value, type)
- and issubclass(value, Float.Module)
- and value != Float.Module
- )
-
-
- def test_disable_quantize():
- class Net(Float.Module):
- def __init__(self):
- super().__init__()
- self.conv = Float.ConvBnRelu2d(3, 3, 3)
- self.conv.disable_quantize()
-
- def forward(self, x):
- return self.conv(x)
-
- net = Net()
- qat_net = quantize_qat(net, inplace=False)
- assert isinstance(qat_net.conv, Float.ConvBnRelu2d)
- assert isinstance(qat_net.conv.conv, Float.Conv2d)
-
-
- def test_convert_with_custom_mapping():
- class FloatExample(Float.Module):
- def forward(self, x):
- return x
-
- class QATExample(QAT.QATModule):
- def forward(self, x):
- return x
-
- @classmethod
- def from_float_module(cls, float_module):
- return cls()
-
- class Net(Float.Module):
- def __init__(self):
- super().__init__()
- self.example = FloatExample()
-
- def forward(self, x):
- return self.example(x)
-
- net = Net()
- qat_net = quantize_qat(net, inplace=False, mapping={FloatExample: QATExample})
- assert isinstance(qat_net.example, QATExample)
|