|
- /**
- * \file dnn/test/x86/conv_bias.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
- * implied.
- */
- #include "src/x86/utils.h"
- #include "test/x86/fixture.h"
-
- #include "megdnn/opr_param_defs.h"
- #include "megdnn/oprs.h"
- #include "test/common/benchmarker.h"
- #include "test/common/checker.h"
- #include "test/common/conv_bias.h"
- #include "test/common/rng.h"
- #include "test/common/tensor.h"
- #include "test/common/workspace_wrapper.h"
- namespace megdnn {
- namespace test {
-
- TEST_F(X86, CONV_BIAS_FORWARD) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_args();
- Checker<ConvBiasForward> checker(handle());
- NormalRNG default_rng;
- ConstValue const_val;
- for (auto&& arg : args) {
- checker.set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_dtype(2, dtype::Float32())
- .set_rng(0, &default_rng)
- .set_rng(1, &default_rng)
- .set_rng(2, &default_rng)
- .set_epsilon(1e-3)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
-
- static void avx2_chanwise_direct_int8x8x32(Handle* handle, uint32_t stride,
- const char* algo) {
- using namespace conv_bias;
- std::vector<TestArg> args;
-
- auto run = [&](size_t ic, size_t w, size_t h, size_t kernel, size_t p,
- NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = stride;
- param.stride_w = stride;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- param.sparse = param::ConvBias::Sparse::GROUP;
- //! no bias
- args.emplace_back(param, TensorShape{2, ic, h, w},
- TensorShape{ic, 1, 1, kernel, kernel}, TensorShape{});
- //! bias channel
- args.emplace_back(param, TensorShape{2, ic, h, w},
- TensorShape{ic, 1, 1, kernel, kernel},
- TensorShape{1, ic, 1, 1});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t pad : {0, 1})
- for (size_t ic : {1, 5, 17, 20})
- for (size_t h : {7, 16, 38, 40})
- for (size_t w : {16, 25, 40, 55})
- for (NonlineMode nonline_mode : {NonlineMode::IDENTITY})
- run(ic, w, h, kernel, pad, nonline_mode);
-
- Checker<ConvBias> checker(handle);
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::Int8())
- .set_dtype(1, dtype::Int8())
- .set_dtype(2, dtype::Int32())
- .set_dtype(4, dtype::Int32())
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng)
- .set_epsilon(1e-3);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(algo));
- for (auto&& arg : args) {
- checker.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
-
- TEST_F(X86_MULTI_THREADS, AVX2_CHANWISE_DIRECT_STRIDE1_INT8x8x32) {
- avx2_chanwise_direct_int8x8x32(handle(), 1,
- "X86_CONV_BIAS_CHANWISE_AVX2_INT8_STRIDE1");
- }
-
- TEST_F(X86_MULTI_THREADS, AVX2_CHANWISE_DIRECT_STRIDE2_INT8x8x32) {
- avx2_chanwise_direct_int8x8x32(handle(), 2,
- "X86_CONV_BIAS_CHANWISE_AVX2_INT8_STRIDE2");
- }
-
- static void avx2_chanwise_direct_quantizeds32(Handle* handle, uint32_t stride,
- const char* algo) {
- using namespace conv_bias;
- std::vector<TestArg> args;
-
- auto run = [&](size_t ic, size_t w, size_t h, size_t kernel, size_t p,
- NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = stride;
- param.stride_w = stride;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- param.sparse = param::ConvBias::Sparse::GROUP;
- //! no bias
- args.emplace_back(param, TensorShape{2, ic, h, w},
- TensorShape{ic, 1, 1, kernel, kernel}, TensorShape{});
- //! bias channel
- args.emplace_back(param, TensorShape{2, ic, h, w},
- TensorShape{ic, 1, 1, kernel, kernel},
- TensorShape{1, ic, 1, 1});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t pad : {0, 1})
- for (size_t ic : {1, 3, 5, 7, 17})
- for (size_t h : {10, 17, 25, 30})
- for (size_t w : {19, 28, 58, 168})
- for (NonlineMode nonline_mode : {NonlineMode::IDENTITY})
- run(ic, w, h, kernel, pad, nonline_mode);
-
- Checker<ConvBias> checker(handle);
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, {})
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng)
- .set_epsilon(1e-3);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(algo));
- for (auto&& arg : args) {
- checker.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
-
- TEST_F(X86_MULTI_THREADS, AVX2_CHANWISE_DIRECT_STRIDE1_QuantizedS32) {
- avx2_chanwise_direct_quantizeds32(
- handle(), 1, "X86_CONV_BIAS_CHANWISE_AVX2_INT8_STRIDE1");
- }
-
- TEST_F(X86_MULTI_THREADS, AVX2_CHANWISE_DIRECT_STRIDE2_QuantizedS32) {
- avx2_chanwise_direct_quantizeds32(
- handle(), 2, "X86_CONV_BIAS_CHANWISE_AVX2_INT8_STRIDE2");
- }
-
- static void avx2_chanwise_direct_quantizeds8x8x8(Handle* handle,
- uint32_t stride,
- const char* algo) {
- using namespace conv_bias;
- std::vector<TestArg> args;
-
- auto run = [&](size_t ic, size_t w, size_t h, size_t kernel, size_t p,
- NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = stride;
- param.stride_w = stride;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- param.sparse = param::ConvBias::Sparse::GROUP;
- //! no bias
- args.emplace_back(param, TensorShape{2, ic, h, w},
- TensorShape{ic, 1, 1, kernel, kernel}, TensorShape{});
- //! bias channel
- args.emplace_back(param, TensorShape{2, ic, h, w},
- TensorShape{ic, 1, 1, kernel, kernel},
- TensorShape{1, ic, 1, 1});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t pad : {0, 1})
- for (size_t ic : {1, 3, 5, 7, 17})
- for (size_t h : {10, 15, 17, 30})
- for (size_t w : {19, 28, 58, 168})
- for (NonlineMode nonline_mode :
- {NonlineMode::IDENTITY, NonlineMode::H_SWISH,
- NonlineMode::RELU})
- run(ic, w, h, kernel, pad, nonline_mode);
-
- Checker<ConvBias> checker(handle);
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(60.25f))
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng)
- .set_epsilon(1e-3);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(algo));
- for (auto&& arg : args) {
- checker.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
-
- TEST_F(X86_MULTI_THREADS, AVX2_CHANWISE_DIRECT_STRIDE1_QuantizedS8x8x8) {
- avx2_chanwise_direct_quantizeds8x8x8(
- handle(), 1, "X86_CONV_BIAS_CHANWISE_AVX2_INT8_STRIDE1");
- }
-
- TEST_F(X86_MULTI_THREADS, AVX2_CHANWISE_DIRECT_STRIDE2_QuantizedS8x8x8) {
- avx2_chanwise_direct_quantizeds8x8x8(
- handle(), 2, "X86_CONV_BIAS_CHANWISE_AVX2_INT8_STRIDE2");
- }
-
- TEST_F(X86_MULTI_THREADS, AVX2_CONV_BIAS_DIRECT_STRIDE1_INT8x8x32) {
- using namespace conv_bias;
- std::vector<TestArg> args;
-
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- param.sparse = param::ConvBias::Sparse::DENSE;
- //! no bias
- args.emplace_back(param, TensorShape{2, ic, h, w},
- TensorShape{oc, ic, kernel, kernel}, TensorShape{});
-
- param.sparse = param::ConvBias::Sparse::GROUP;
- //! no bias
- args.emplace_back(param, TensorShape{2, 2 * ic, h, w},
- TensorShape{2, oc / 2, ic, kernel, kernel},
- TensorShape{});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t pad : {0, 1})
- for (size_t oc : {4, 8, 13, 16, 24})
- for (size_t ic : {2, 3, 7, 10})
- for (size_t h : {10, 11})
- for (size_t w : {8, 10})
- for (NonlineMode nonline_mode :
- {NonlineMode::IDENTITY})
- run(oc, ic, w, h, kernel, pad, nonline_mode);
-
- Checker<ConvBias> checker(handle());
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::Int8())
- .set_dtype(1, dtype::Int8())
- .set_dtype(2, dtype::Int32())
- .set_dtype(4, dtype::Int32())
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng)
- .set_epsilon(1e-3);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "X86_CONV_BIAS_DIRECT_AVX2_INT8_STRIDE1"));
- for (auto&& arg : args) {
- checker.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- TEST_F(X86_MULTI_THREADS, AVX2_CONV_BIAS_DIRECT_STRIDE1_QuantizedS32) {
- using namespace conv_bias;
- std::vector<TestArg> args;
-
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- param.sparse = param::ConvBias::Sparse::DENSE;
- //! no bias
- args.emplace_back(param, TensorShape{2, ic, h, w},
- TensorShape{oc, ic, kernel, kernel}, TensorShape{});
-
- param.sparse = param::ConvBias::Sparse::GROUP;
- //! no bias
- args.emplace_back(param, TensorShape{2, 2 * ic, h, w},
- TensorShape{2, oc / 2, ic, kernel, kernel},
- TensorShape{});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t pad : {0, 1})
- for (size_t oc : {4, 8, 13, 16, 24})
- for (size_t ic : {2, 3, 7, 10})
- for (size_t h : {10, 11})
- for (size_t w : {8, 10})
- for (NonlineMode nonline_mode :
- {NonlineMode::IDENTITY})
- run(oc, ic, w, h, kernel, pad, nonline_mode);
-
- Checker<ConvBias> checker(handle());
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, {})
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng)
- .set_epsilon(1e-3);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "X86_CONV_BIAS_DIRECT_AVX2_INT8_STRIDE1"));
- for (auto&& arg : args) {
- checker.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
-
- TEST_F(X86_MULTI_THREADS, AVX2_CONV_BIAS_DIRECT_STRIDE1_S8S8S8) {
- using namespace conv_bias;
- std::vector<TestArg> args;
-
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- param.sparse = param::ConvBias::Sparse::DENSE;
- //! no bias
- args.emplace_back(param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel}, TensorShape{});
- //! bias channel
- args.emplace_back(param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
-
- param.sparse = param::ConvBias::Sparse::GROUP;
- //! no bias
- args.emplace_back(param, TensorShape{2, 2 * ic, h, w},
- TensorShape{2, oc / 2, ic, kernel, kernel},
- TensorShape{});
- //! bias channel
- args.emplace_back(param, TensorShape{2, 2 * ic, h, w},
- TensorShape{2, oc / 2, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t pad : {0, 1})
- for (size_t oc : {4, 8, 14, 16, 24})
- for (size_t ic : {2, 3, 7, 10})
- for (size_t h : {10, 11})
- for (size_t w : {8, 10})
- for (NonlineMode nonline_mode :
- {NonlineMode::IDENTITY, NonlineMode::RELU,
- NonlineMode::H_SWISH})
- run(oc, ic, w, h, kernel, pad, nonline_mode);
-
- Checker<ConvBias> checker(handle());
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(60.25f))
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng)
- .set_epsilon(1e-3);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "X86_CONV_BIAS_DIRECT_AVX2_INT8_STRIDE1"));
- for (auto&& arg : args) {
- checker.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
-
- TEST_F(X86_MULTI_THREADS, AVX2_CONV_BIAS_DIRECT_STRIDE2_INT8x8x32) {
- using namespace conv_bias;
- std::vector<TestArg> args;
-
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 2;
- param.stride_w = 2;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- param.sparse = param::ConvBias::Sparse::DENSE;
- //! no bias
- args.emplace_back(param, TensorShape{2, ic, h, w},
- TensorShape{oc, ic, kernel, kernel}, TensorShape{});
-
- param.sparse = param::ConvBias::Sparse::GROUP;
- //! no bias
- args.emplace_back(param, TensorShape{2, 2 * ic, h, w},
- TensorShape{2, oc / 2, ic, kernel, kernel},
- TensorShape{});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t pad : {0, 1, 2, 5})
- for (size_t oc : {4, 8, 13, 16, 24})
- for (size_t ic : {2, 3, 7, 10})
- for (size_t h : {10, 11})
- for (size_t w : {8, 10, 20})
- for (NonlineMode nonline_mode :
- {NonlineMode::IDENTITY})
- run(oc, ic, w, h, kernel, pad, nonline_mode);
-
- Checker<ConvBias> checker(handle());
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::Int8())
- .set_dtype(1, dtype::Int8())
- .set_dtype(2, dtype::Int32())
- .set_dtype(4, dtype::Int32())
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng)
- .set_epsilon(1e-3);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "X86_CONV_BIAS_DIRECT_AVX2_INT8_STRIDE2"));
- for (auto&& arg : args) {
- checker.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- TEST_F(X86_MULTI_THREADS, AVX2_CONV_BIAS_DIRECT_STRIDE2_QuantizedS32) {
- using namespace conv_bias;
- std::vector<TestArg> args;
-
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 2;
- param.stride_w = 2;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- param.sparse = param::ConvBias::Sparse::DENSE;
- //! no bias
- args.emplace_back(param, TensorShape{2, ic, h, w},
- TensorShape{oc, ic, kernel, kernel}, TensorShape{});
-
- param.sparse = param::ConvBias::Sparse::GROUP;
- //! no bias
- args.emplace_back(param, TensorShape{2, 2 * ic, h, w},
- TensorShape{2, oc / 2, ic, kernel, kernel},
- TensorShape{});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t pad : {0, 1, 3, 5})
- for (size_t oc : {4, 8, 13, 16, 24})
- for (size_t ic : {2, 3, 7, 10})
- for (size_t h : {10, 11})
- for (size_t w : {8, 10, 19})
- for (NonlineMode nonline_mode :
- {NonlineMode::IDENTITY})
- run(oc, ic, w, h, kernel, pad, nonline_mode);
-
- Checker<ConvBias> checker(handle());
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, {})
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng)
- .set_epsilon(1e-3);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "X86_CONV_BIAS_DIRECT_AVX2_INT8_STRIDE2"));
- for (auto&& arg : args) {
- checker.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
-
- TEST_F(X86_MULTI_THREADS, AVX2_CONV_BIAS_DIRECT_STRIDE2_S8S8S8) {
- using namespace conv_bias;
- std::vector<TestArg> args;
-
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 2;
- param.stride_w = 2;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- param.sparse = param::ConvBias::Sparse::DENSE;
- //! no bias
- args.emplace_back(param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel}, TensorShape{});
- //! bias channel
- args.emplace_back(param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
-
- param.sparse = param::ConvBias::Sparse::GROUP;
- //! no bias
- args.emplace_back(param, TensorShape{2, 2 * ic, h, w},
- TensorShape{2, oc / 2, ic, kernel, kernel},
- TensorShape{});
- //! bias channel
- args.emplace_back(param, TensorShape{2, 2 * ic, h, w},
- TensorShape{2, oc / 2, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t pad : {0, 1, 3, 5})
- for (size_t oc : {4, 8, 14, 16, 24})
- for (size_t ic : {2, 3, 7, 10})
- for (size_t h : {10, 11})
- for (size_t w : {8, 10, 18})
- for (NonlineMode nonline_mode :
- {NonlineMode::IDENTITY, NonlineMode::RELU,
- NonlineMode::H_SWISH})
- run(oc, ic, w, h, kernel, pad, nonline_mode);
-
- Checker<ConvBias> checker(handle());
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::QuantizedS8(2.5f))
- .set_dtype(1, dtype::QuantizedS8(2.5f))
- .set_dtype(2, dtype::QuantizedS32(6.25f))
- .set_dtype(4, dtype::QuantizedS8(60.25f))
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng)
- .set_epsilon(1e-3);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "X86_CONV_BIAS_DIRECT_AVX2_INT8_STRIDE2"));
- for (auto&& arg : args) {
- checker.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
-
- TEST_F(X86_MULTI_THREADS, CONV_BIAS_DIRECT_STRIDE1_SMALL_GROUP) {
- using namespace conv_bias;
- std::vector<TestArg> args;
-
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! no bias
- args.emplace_back(param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel}, TensorShape{});
- //! bias channel
- args.emplace_back(param, TensorShape{2, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
- //! bias
- args.emplace_back(param, TensorShape{2, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- TensorShape{2, oc, (h + param.pad_h * 2 - kernel) + 1,
- (w + param.pad_w * 2 - kernel) + 1});
- };
-
- for (size_t kernel : {1, 2, 3, 4, 5, 6, 7})
- for (size_t ic : {1, 4, 8, 16})
- for (size_t oc : {1, 4, 8})
- for (size_t p : {0, 2})
- for (size_t size : {20, 21, 24})
- for (NonlineMode nonline_mode :
- {NonlineMode::RELU, NonlineMode::SIGMOID,
- NonlineMode::H_SWISH, NonlineMode::IDENTITY}) {
- run(oc, ic, size, size, kernel, p, nonline_mode);
- }
-
- Checker<ConvBias> checker(handle());
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_dtype(2, dtype::Float32())
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "X86_CONV_BIAS_DIRECT_STRIDE1_SMALL_GROUP"));
- for (auto&& arg : args) {
- checker.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
-
- TEST_F(X86_MULTI_THREADS, CONV_BIAS_DIRECT_STRIDE1_LARGE_GROUP) {
- using namespace conv_bias;
- std::vector<TestArg> args;
-
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! no bias
- args.emplace_back(param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel}, TensorShape{});
- //! bias channel
- args.emplace_back(param, TensorShape{2, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
- //! bias
- args.emplace_back(param, TensorShape{2, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- TensorShape{2, oc, (h + param.pad_h * 2 - kernel) + 1,
- (w + param.pad_w * 2 - kernel) + 1});
- };
-
- for (size_t kernel : {1, 2, 3, 4, 5, 6, 7})
- for (size_t ic : {1, 4, 8, 16})
- for (size_t oc : {1, 4, 8})
- for (size_t p : {0, 2})
- for (size_t size : {20, 21, 24})
- for (NonlineMode nonline_mode :
- {NonlineMode::RELU, NonlineMode::SIGMOID,
- NonlineMode::H_SWISH, NonlineMode::IDENTITY}) {
- run(oc, ic, size, size, kernel, p, nonline_mode);
- }
-
- Checker<ConvBias> checker(handle());
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_dtype(2, dtype::Float32())
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "X86_CONV_BIAS_DIRECT_STRIDE1_LARGE_GROUP"));
- for (auto&& arg : args) {
- checker.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
-
- TEST_F(X86_MULTI_THREADS, CONV_BIAS_DIRECT_STRIDE2) {
- using namespace conv_bias;
- std::vector<TestArg> args;
-
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 2;
- param.stride_w = 2;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! no bias
- args.emplace_back(param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel}, TensorShape{});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t ic : {1, 4, 8, 16})
- for (size_t oc : {1, 4, 8})
- for (size_t p : {0, 2})
- for (size_t size : {20, 21, 24})
- for (NonlineMode nonline_mode :
- {NonlineMode::RELU, NonlineMode::SIGMOID,
- NonlineMode::H_SWISH, NonlineMode::IDENTITY}) {
- run(oc, ic, size, size, kernel, p, nonline_mode);
- }
-
- Checker<ConvBias> checker(handle());
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_dtype(2, dtype::Float32())
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "X86_CONV_BIAS_DIRECT_STRIDE2_SMALL_GROUP"));
- for (auto&& arg : args) {
- checker.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "X86_CONV_BIAS_DIRECT_STRIDE2_LARGE_GROUP"));
- for (auto&& arg : args) {
- checker.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
-
- TEST_F(X86_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8X8X) {
- using namespace conv_bias;
- std::vector<TestArg> args;
-
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! no bias
- args.emplace_back(param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel}, TensorShape{});
- };
-
- for (size_t kernel : {2, 3, 4, 5, 6, 7})
- for (size_t ic : {1, 4, 8, 16})
- for (size_t oc : {1, 4, 8})
- for (size_t p : {0, 2})
- for (size_t size : {20, 21, 24})
- for (NonlineMode nonline_mode :
- {NonlineMode::IDENTITY}) {
- run(oc, ic, size, size, kernel, p, nonline_mode);
- }
- //! test OC block
- run(2046, 1, 8, 8, 2, 0, NonlineMode::IDENTITY);
-
- Checker<ConvBias> checker(handle());
- UniformIntRNG rng{-50, 50};
- #define cb(algo_name) \
- checker.set_before_exec_callback( \
- conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name)); \
- checker.set_dtype(0, dtype::Int8()); \
- checker.set_dtype(1, dtype::Int8()); \
- checker.set_dtype(2, dtype::Int32()); \
- checker.set_dtype(4, dtype::Int32()); \
- for (auto&& arg : args) { \
- checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}}); \
- } \
- for (auto&& arg : args) { \
- checker.set_dtype(0, dtype::QuantizedS8(2.5f)) \
- .set_dtype(1, dtype::QuantizedS8(2.5f)) \
- .set_dtype(2, dtype::QuantizedS32(6.25f)) \
- .set_dtype(4, {}) \
- .set_rng(0, &rng) \
- .set_rng(1, &rng) \
- .set_rng(2, &rng) \
- .set_param(arg.param) \
- .execs({arg.src, arg.filter, {}, {}, {}}); \
- }
- #define cb2(algo_name) \
- checker.set_before_exec_callback( \
- conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name)); \
- checker.set_dtype(0, dtype::Int8()); \
- checker.set_dtype(1, dtype::Int8()); \
- checker.set_dtype(2, dtype::Int16()); \
- checker.set_dtype(4, dtype::Int16()); \
- for (auto&& arg : args) { \
- checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}}); \
- }
-
- #if MEGDNN_X86_WITH_MKL_DNN
- if (megdnn::x86::is_supported(x86::SIMDType::VNNI)) {
- cb("IM2COLMATMUL:X86_INT8X8X32_MKLDNN");
- }
- #endif
- #if MEGDNN_X86_WITH_VNNI
- if (megdnn::x86::is_supported(x86::SIMDType::VNNI)) {
- cb("IM2COLMATMUL:X86_INT8X8X32_VNNI");
- }
- #endif
- if (megdnn::x86::is_supported(x86::SIMDType::AVX2)) {
- cb("IM2COLMATMUL:X86_INT8X8X32_AVX2_2X4X16");
- cb("IM2COLMATMUL:X86_INT8X8X32_AVX2_4X16X2");
- cb2("IM2COLMATMUL:X86_INT8X8X16_AVX2");
- }
- if (::megdnn::x86::is_supported(::megdnn::x86::SIMDType::SSE4_2)) {
- cb("IM2COLMATMUL:X86_INT8X8X32_SSE_4X8X2");
- }
-
- #undef cb
- #undef cb2
- }
-
- TEST_F(X86_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_FP32) {
- using namespace conv_bias;
- std::vector<TestArg> args;
-
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! no bias
- args.emplace_back(param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel}, TensorShape{});
- args.emplace_back(param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
- args.emplace_back(
- param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, (h + 2 * p - kernel) / param.stride_h + 1,
- (w + 2 * p - kernel) / param.stride_w + 1});
- };
-
- for (size_t kernel : {2, 3, 4, 5, 6, 7})
- for (size_t ic : {1, 4, 8, 16})
- for (size_t oc : {1, 4, 8, 16, 300})
- for (size_t p : {0, 2})
- for (size_t size : {8, 24})
- for (NonlineMode nonline_mode :
- {NonlineMode::IDENTITY, NonlineMode::RELU}) {
- run(oc, ic, size, size, kernel, p, nonline_mode);
- }
-
- run(2046, 8, 20, 20, 3, 1, NonlineMode::IDENTITY);
- Checker<ConvBias> checker(handle());
- #define cb(algo_name) \
- checker.set_before_exec_callback( \
- conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name)); \
- for (auto&& arg : args) { \
- checker.set_param(arg.param).execs( \
- {arg.src, arg.filter, arg.bias, {}, {}}); \
- }
-
- #if MEGDNN_X86_WITH_MKL || MEGDNN_X86_WITH_OPENBLAS
- cb("IM2COLMATMUL:X86_F32_BLAS");
- #endif
-
- #undef cb
- }
-
- #if MEGDNN_X86_WITH_MKL && SUPPORT_MKL_PACKED_GEMM
- TEST_F(X86_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_FP32_PACKA) {
- using namespace conv_bias;
- std::vector<TestArg> args;
-
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! no bias
- args.emplace_back(param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel}, TensorShape{});
- args.emplace_back(param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
- args.emplace_back(
- param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, (h + 2 * p - kernel) / param.stride_h + 1,
- (w + 2 * p - kernel) / param.stride_w + 1});
- param.sparse = param::ConvBias::Sparse::GROUP;
- args.emplace_back(param, TensorShape{1, 2 * ic, h, w},
- TensorShape{2, oc, ic, kernel, kernel},
- TensorShape{});
- args.emplace_back(param, TensorShape{1, 2 * ic, h, w},
- TensorShape{2, oc, ic, kernel, kernel},
- TensorShape{1, oc * 2, 1, 1});
-
- args.emplace_back(
- param, TensorShape{1, 2 * ic, h, w},
- TensorShape{2, oc, ic, kernel, kernel},
- TensorShape{1, 2 * oc, (h + 2 * param.pad_h - kernel) / 1 + 1,
- (w + 2 * param.pad_w - kernel) / 1 + 1});
- };
-
- for (size_t kernel : {2, 3, 4, 5, 6, 7})
- for (size_t ic : {1, 4, 8, 16})
- for (size_t oc : {1, 4, 8, 16})
- for (size_t p : {0, 1})
- for (size_t size : {8, 24})
- for (NonlineMode nonline_mode :
- {NonlineMode::IDENTITY, NonlineMode::RELU}) {
- run(oc, ic, size, size, kernel, p, nonline_mode);
- }
-
- run(2046, 8, 20, 20, 3, 1, NonlineMode::IDENTITY);
- Checker<ConvBias> checker(handle());
- #define cb(algo_name) \
- checker.set_before_exec_callback( \
- conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name)); \
- for (auto&& arg : args) { \
- checker.set_param(arg.param).execs( \
- {arg.src, arg.filter, arg.bias, {}, {}}); \
- }
-
- cb("IM2COLMATMUL:X86_F32_MKL_PACKA:192");
-
- #undef cb
- }
-
- /**************************** Conv1x1 PackA *************************/
- namespace {
- void checker_conv_bias(std::vector<conv_bias::TestArg> args, Handle* handle,
- RNG* rng, float epsilon, DType type0, DType type1,
- DType type2, DType type3, const char* algo_name) {
- using namespace conv_bias;
-
- Checker<ConvBias> checker(handle);
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
- checker.set_dtype(0, type0);
- checker.set_dtype(1, type1);
- checker.set_dtype(2, type2);
- checker.set_dtype(4, type3);
- checker.set_epsilon(epsilon);
- if (NULL != rng) {
- checker.set_rng(0, rng).set_rng(1, rng).set_rng(2, rng).set_rng(3, rng);
- }
- for (auto&& arg : args) {
- checker.set_param(arg.param).execs(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- } // namespace
-
- #if MEGDNN_X86_WITH_MKL
- TEST_F(X86_MULTI_THREADS, CONV_BIAS_CONV1X1_S1_FP32_PACKA) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args = get_conv_bias_1x1_args(false, false);
- check_conv_bias(args, handle(), "CONV1x1:X86_F32_MKL_PACKA:24");
- }
-
- TEST_F(X86_MULTI_THREADS, CONV_BIAS_CONV1X1_S1_FP32_BLAS) {
- using namespace conv_bias;
- std::vector<conv_bias::TestArg> args = get_conv_bias_1x1_args(false, false);
- check_conv_bias(args, handle(), "CONV1x1:X86_F32_BLAS:48");
- }
- #endif
-
- TEST_F(X86_MULTI_THREADS, CONV_BIAS_CONV1X1_S1_INT8X8X32) {
- using namespace conv_bias;
- UniformIntRNG rng{-50, 50};
- float epsilon = 0.001;
- std::vector<conv_bias::TestArg> args = get_conv_bias_1x1_args(true, true);
- #if MEGDNN_X86_WITH_MKL_DNN
- if (x86::is_supported(x86::SIMDType::VNNI)) {
- checker_conv_bias(args, handle(), &rng, epsilon, dtype::Int8{},
- dtype::Int8{}, dtype::Int32{}, dtype::Int32{},
- "CONV1x1:X86_INT8X8X32_MKLDNN:24");
- }
- #endif
- #if MEGDNN_X86_WITH_VNNI
- if (x86::is_supported(x86::SIMDType::VNNI)) {
- checker_conv_bias(args, handle(), &rng, epsilon, dtype::Int8{},
- dtype::Int8{}, dtype::Int32{}, dtype::Int32{},
- "CONV1x1:X86_INT8X8X32_VNNI:24");
- }
- #endif
- if (x86::is_supported(x86::SIMDType::AVX2)) {
- checker_conv_bias(args, handle(), &rng, epsilon, dtype::Int8{},
- dtype::Int8{}, dtype::Int32{}, dtype::Int32{},
- "CONV1x1:X86_INT8X8X32_AVX2_4X16X2:24");
- checker_conv_bias(args, handle(), &rng, epsilon, dtype::Int8{},
- dtype::Int8{}, dtype::Int32{}, dtype::Int32{},
- "CONV1x1:X86_INT8X8X32_AVX2_2X4X16:24");
- }
- checker_conv_bias(args, handle(), &rng, epsilon, dtype::Int8{},
- dtype::Int8{}, dtype::Int32{}, dtype::Int32{},
- "CONV1x1:X86_INT8X8X32_SSE_4X8X2:48");
- }
- /************************* End Conv1x1 PackA ************************/
-
- #endif
-
- TEST_F(X86_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QINT8) {
- using namespace conv_bias;
- std::vector<TestArg> args;
-
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! no bias
- args.emplace_back(param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel}, TensorShape{});
- //! bias channel
- args.emplace_back(param, TensorShape{2, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
- };
-
- for (size_t kernel : {2, 3, 4, 5, 6, 7})
- for (size_t ic : {1, 4, 8, 16})
- for (size_t oc : {1, 4, 8})
- for (size_t p : {0, 2})
- for (size_t size : {20, 21, 24})
- for (NonlineMode nonline_mode :
- {NonlineMode::IDENTITY, NonlineMode::RELU,
- NonlineMode::H_SWISH}) {
- run(oc, ic, size, size, kernel, p, nonline_mode);
- }
- run(2046, 8, 20, 20, 3, 1, NonlineMode::IDENTITY);
- Checker<ConvBias> checker(handle());
- #define cb(algo_name) \
- checker.set_before_exec_callback( \
- conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name)); \
- UniformIntRNG rng{-50, 50}; \
- for (auto&& arg : args) { \
- checker.set_dtype(0, dtype::QuantizedS8(2.5f)) \
- .set_dtype(1, dtype::QuantizedS8(2.5f)) \
- .set_dtype(2, dtype::QuantizedS32(6.25f)) \
- .set_dtype(4, dtype::QuantizedS8(60.25)) \
- .set_rng(0, &rng) \
- .set_rng(1, &rng) \
- .set_rng(2, &rng) \
- .set_param(arg.param) \
- .execs({arg.src, arg.filter, {}, {}, {}}); \
- }
-
- #if MEGDNN_X86_WITH_MKL_DNN
- if (x86::is_supported(x86::SIMDType::VNNI)) {
- cb("IM2COLMATMUL:X86_INT8X8X32_MKLDNN");
- }
- #endif
- #if MEGDNN_X86_WITH_VNNI
- if (x86::is_supported(x86::SIMDType::VNNI)) {
- cb("IM2COLMATMUL:X86_INT8X8X32_VNNI");
- }
- #endif
- if (x86::is_supported(x86::SIMDType::AVX2)) {
- cb("IM2COLMATMUL:X86_INT8X8X32_AVX2_2X4X16");
- }
-
- #undef cb
- }
-
- TEST_F(X86, CONV_BIAS_MATMUL) {
- using namespace conv_bias;
- std::vector<TestArg> args;
-
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! no bias
- param.sparse = param::ConvBias::Sparse::DENSE;
- args.emplace_back(param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel}, TensorShape{});
- //! bias channel
- args.emplace_back(param, TensorShape{2, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- TensorShape{1, oc, 1, 1});
- //! bias
- args.emplace_back(param, TensorShape{2, ic, h, w},
- TensorShape{oc, ic, kernel, kernel},
- TensorShape{2, oc, (h + param.pad_h * 2 - kernel) + 1,
- (w + param.pad_w * 2 - kernel) + 1});
- //! gruop
- param.sparse = param::ConvBias::Sparse::GROUP;
- args.emplace_back(
- param, TensorShape{2, 2 * ic, h, w},
- TensorShape{2, oc, ic, kernel, kernel},
- TensorShape{2, 2 * oc, (h + param.pad_h * 2 - kernel) + 1,
- (w + param.pad_w * 2 - kernel) + 1});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t ic : {1, 2, 3, 4})
- for (size_t oc : {1, 2, 3, 4})
- for (size_t p : {0, 2})
- for (size_t size : {20, 21, 22, 23, 24})
- for (NonlineMode nonline_mode :
- {NonlineMode::RELU, NonlineMode::SIGMOID,
- NonlineMode::H_SWISH, NonlineMode::IDENTITY}) {
- run(oc, ic, size, size, kernel, p, nonline_mode);
- }
-
- Checker<ConvBias> checker(handle());
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "X86_CONV_BIAS_MATMUL"));
- checker.set_epsilon(1);
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_dtype(2, dtype::Float32())
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng);
-
- for (auto&& arg : args) {
- checker.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- #if MEGDNN_WITH_BENCHMARK
- #if MEGDNN_X86_WITH_MKL_DNN
- static void x86_benchmark_fp32_mkldnn(Handle* handle) {
- constexpr size_t RUNS = 30;
- param::ConvBias param;
-
- Benchmarker<ConvBias> benchmarker_mkldnn(handle);
- benchmarker_mkldnn.set_display(false).set_times(RUNS);
- benchmarker_mkldnn.set_before_exec_callback(
- AlgoChecker<ConvBias>("MKLDNN_CONV_FP32"));
-
- Benchmarker<ConvBias> benchmarker_im2col(handle);
- benchmarker_im2col.set_display(false).set_times(RUNS);
- benchmarker_im2col.set_before_exec_callback(
- AlgoChecker<ConvBias>("IM2COLMATMUL.+"));
- auto run = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS, size_t SZ, size_t GROUP = 1) {
- TensorShape src({N, IC, H, W}), filter({OC, IC, FS, FS}),
- bias({1, OC, 1, 1}), z({}), dst({N, OC, H / SZ, W / SZ});
- param.pad_h = FS / 2;
- param.pad_w = FS / 2;
- param.stride_h = SZ;
- param.stride_w = SZ;
- param.format = param::ConvBias::Format::NCHW;
- param.sparse = param::ConvBias::Sparse::DENSE;
- if (GROUP > 1) {
- param.sparse = param::ConvBias::Sparse::GROUP;
- filter = {GROUP, OC / GROUP, IC / GROUP, FS, FS};
- }
- auto im2col_used = benchmarker_im2col.set_param(param).exec(
- {src, filter, bias, z, dst}) /
- RUNS;
-
- src = IC < 8 ? TensorShape{N, IC, H, W}
- : TensorShape{N, IC / 8, H, W, 8};
-
- filter = IC < 8 ? TensorShape{OC / 8, FS, FS, IC, 8}
- : TensorShape{OC / 8, IC / 8, FS, FS, 8, 8};
- if (GROUP > 1 && OC == GROUP && IC == GROUP) {
- filter = {GROUP / 8, 1, 1, FS, FS, 8};
- } else if (GROUP > 1 && OC / GROUP % 8 == 0 && IC / GROUP % 8 == 0) {
- filter = {GROUP, OC / GROUP / 8, IC / GROUP / 8, FS, FS, 8, 8};
- }
- bias = {1, OC / 8, 1, 1, 8};
- z = {};
- dst = {N, OC / 8, H / SZ, W / SZ, 8};
- param.format = param::ConvBias::Format::NCHW88;
- auto mkldnn_used = benchmarker_mkldnn.set_param(param).exec(
- {src, filter, bias, z, dst}) /
- RUNS;
- float computations =
- (IC / GROUP * FS * FS + 1) * dst.total_nr_elems() * 2 * 1e-6;
- std::cout << "run " << src.to_string() << " " << filter.to_string()
- << " " << bias.to_string() << " " << dst.to_string()
- << std::endl;
- std::cout << "im2col: " << im2col_used << " ms, "
- << (computations / im2col_used) << " Gops, ";
- std::cout << "mkldnn: " << mkldnn_used << " ms, "
- << (computations / mkldnn_used) << " Gops, "
- << "spped up: " << (im2col_used / mkldnn_used) << ", ";
- std::cout << std::endl;
- };
-
- run(1, 64, 64, 56, 56, 3, 1);
-
- run(1, 3, 64, 224, 224, 3, 1);
- run(1, 3, 64, 224, 224, 7, 2);
-
- run(1, 64, 64, 56, 56, 3, 1);
- run(1, 128, 128, 28, 28, 3, 1);
- run(1, 256, 256, 14, 14, 3, 1);
- run(1, 512, 512, 7, 7, 3, 1);
- run(1, 256, 64, 56, 56, 1, 1);
- run(1, 512, 128, 28, 28, 1, 1);
- run(1, 1024, 256, 14, 14, 1, 1);
- run(1, 2048, 512, 7, 7, 1, 1);
-
- run(1, 32, 32, 112, 112, 3, 1, 32);
- run(1, 144, 144, 56, 56, 3, 1, 144);
- run(1, 192, 192, 28, 28, 3, 1, 192);
- run(1, 384, 384, 28, 28, 3, 1, 384);
- run(1, 576, 576, 14, 14, 3, 1, 576);
- run(1, 960, 960, 7, 7, 3, 1, 960);
-
- run(1, 256, 128, 56, 56, 1, 2, 1);
- run(1, 512, 256, 28, 28, 1, 2, 1);
- run(1, 1024, 512, 14, 14, 1, 2, 1);
- run(1, 96, 96, 112, 112, 3, 2, 96);
- run(1, 144, 144, 56, 56, 3, 2, 144);
- run(1, 384, 384, 28, 28, 3, 2, 384);
- run(1, 576, 576, 14, 14, 3, 2, 576);
- }
- TEST_F(X86, BENCHMARK_CONVBIAS_FP32_MKLDNN) {
- x86_benchmark_fp32_mkldnn(handle());
- }
- TEST_F(X86_MULTI_THREADS, BENCHMARK_CONVBIAS_FP32_MKLDNN) {
- x86_benchmark_fp32_mkldnn(handle());
- }
- #endif
- #endif
-
- /************************* Winograd ****************************/
- namespace {
- std::vector<conv_bias::TestArg> get_winograd_mk_nchw88_args() {
- std::vector<conv_bias::TestArg> args;
- param::ConvBias cur_param;
- cur_param.format = param::ConvBias::Format::NCHW88;
- using NLMode = param::ConvBias::NonlineMode;
-
- // clang-format off
- for (auto nlmode :
- {NLMode::IDENTITY, NLMode::RELU, NLMode::SIGMOID, NLMode::H_SWISH}) {
- for (size_t ic : {1, 2}) {
- for (size_t oc : {1, 2}) {
- for (size_t i : {9, 63}) {
-
- cur_param.mode = param::ConvBias::Mode::CROSS_CORRELATION;
- cur_param.nonlineMode = nlmode;
-
- cur_param.sparse = param::ConvBias::Sparse::DENSE;
- cur_param.pad_h = cur_param.pad_w = 1;
-
- args.emplace_back(cur_param, TensorShape{1, ic, i, i, 8},
- TensorShape{oc, ic, 3, 3, 8, 8},
- TensorShape{1, oc, 1, 1, 8});
- args.emplace_back(cur_param, TensorShape{1, ic, i, i, 8},
- TensorShape{oc, ic, 3, 3, 8, 8},TensorShape{});
- //! bias
- args.emplace_back(cur_param, TensorShape{2, ic, i, i, 8},
- TensorShape{oc, ic, 3, 3, 8, 8}, TensorShape{2, oc, i, i, 8});
-
- /*cur_param.sparse = param::ConvBias::Sparse::GROUP;
- args.emplace_back(cur_param, TensorShape{2, 2 * ic, i, i, 8},
- TensorShape{2, oc, ic, 3, 3, 8, 8},
- TensorShape{1, 2 * oc, 1, 1, 8});*/
- }}}
- // clang-format on
- //! test for multi-thread OC parallel
- cur_param.sparse = param::ConvBias::Sparse::DENSE;
- cur_param.pad_h = cur_param.pad_w = 1;
- args.emplace_back(cur_param, TensorShape{2, 1, 9, 9, 8},
- TensorShape{128, 1, 3, 3, 8, 8},
- TensorShape{1, 128, 1, 1, 8});
- /*cur_param.sparse = param::ConvBias::Sparse::GROUP;
- args.emplace_back(cur_param, TensorShape{2, 2, 9, 9, 8},
- TensorShape{2, 128, 1, 3, 3, 8, 8},
- TensorShape{1, 2 * 128, 1, 1, 8});*/
- }
- return args;
- }
- } // namespace
-
- TEST_F(X86_MULTI_THREADS, CONV_BIAS_WINOGRAD_NCHW88_F63) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_mk_nchw88_args();
- Checker<ConvBiasForward> checker(handle());
-
- checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>(
- ssprintf("WINOGRAD:X86_F32MK8_8X8:8:6").c_str()));
-
- for (auto&& arg : args) {
- checker.set_param(arg.param).execs(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
-
- TEST_F(X86_MULTI_THREADS, CONV_BIAS_WINOGRAD_NCHW88_F23) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_mk_nchw88_args();
- Checker<ConvBiasForward> checker(handle());
-
- checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>(
- ssprintf("WINOGRAD:X86_F32MK8_8X8:8:2").c_str()));
-
- for (auto&& arg : args) {
- checker.set_param(arg.param).execs(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
-
- TEST_F(X86_MULTI_THREADS, CONV_BIAS_WINOGRAD_WEIGHT_PREPROCESS) {
- using namespace conv_bias;
- std::vector<TestArg> args = get_winograd_mk_nchw88_args();
- Checker<ConvBiasForward> checker(handle());
- auto extra_impl = [](const TensorNDArray& tensors, uint32_t m,
- param::ConvBias param, Handle* handle) {
- megdnn_assert(param.format == param::ConvBias::Format::NCHW88);
- auto winograd_preprocess_opr =
- handle->create_operator<WinogradFilterPreprocess>();
- winograd_preprocess_opr->param().output_block_size = m;
- winograd_preprocess_opr->param().format = param::MatrixMul::Format::MK8;
- TensorLayout filter_transform_layout;
- winograd_preprocess_opr->deduce_layout(tensors[1].layout,
- filter_transform_layout);
- size_t winograd_preprocess_workspace_in_bytes =
- winograd_preprocess_opr->get_workspace_in_bytes(
- tensors[1].layout, filter_transform_layout);
-
- auto conv_bias_opr = handle->create_operator<ConvBias>();
- conv_bias_opr->param() = param;
- conv_bias_opr->param().format =
- param::ConvBias::Format::NCHW88_WINOGRAD;
- conv_bias_opr->param().output_block_size = m;
- size_t conv_bias_workspace_in_bytes =
- conv_bias_opr->get_workspace_in_bytes(
- tensors[0].layout, filter_transform_layout,
- tensors[2].layout, tensors[3].layout, tensors[4].layout,
- nullptr);
-
- WorkspaceBundle wb(nullptr, {filter_transform_layout.span().dist_byte(),
- conv_bias_workspace_in_bytes,
- winograd_preprocess_workspace_in_bytes});
- wb.set(malloc(wb.total_size_in_bytes()));
-
- TensorND filter_transform_tensor(wb.get(0),
- std::move(filter_transform_layout));
- winograd_preprocess_opr->exec(tensors[1], filter_transform_tensor,
- wb.get_workspace(2));
- conv_bias_opr->exec(tensors[0], filter_transform_tensor, tensors[2],
- tensors[3], tensors[4], nullptr,
- wb.get_workspace(1));
-
- free(wb.ptr());
- };
-
- auto run = [&checker, &extra_impl](
- Handle* handle, const std::vector<TestArg>& args,
- const std::vector<size_t>& out_size, DType A_dtype,
- DType B_dtype, DType C_dtype, DType D_dtype,
- const float eps) {
- for (auto&& arg : args) {
- for (uint32_t m : out_size) {
- checker.set_extra_opr_impl(std::bind(extra_impl,
- std::placeholders::_1, m,
- arg.param, handle));
- checker.set_dtype(0, A_dtype)
- .set_dtype(1, B_dtype)
- .set_dtype(2, C_dtype)
- .set_dtype(4, D_dtype)
- .set_epsilon(eps)
- .set_param(arg.param)
- .execs({arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- };
- run(handle(), args, {2, 6}, dtype::Float32(), dtype::Float32(),
- dtype::Float32(), dtype::Float32(), 1e-3f);
- }
-
- /*********************************** End winograd ************************/
- #if MEGDNN_X86_WITH_MKL_DNN
- static void x86_correctness_fp32_mkldnn_run(
- Checker<ConvBias>& checker, UniformIntRNG& rng, Handle* handle,
- ConvBiasForward::BiasMode bias_mode,
- param::ConvBias::NonlineMode noline_mode, size_t n, size_t stride,
- size_t kernel, size_t oc, size_t ic, size_t h, size_t w, size_t group) {
- auto oc_per_group = oc / group;
- auto ic_per_group = ic / group;
- bool ok_group = oc_per_group % 8 == 0 && oc_per_group > 0 &&
- (ic_per_group % 8 == 0 || ic_per_group == 3) &&
- ic_per_group > 0;
- bool ok_depthwise = oc == ic && oc == group;
- if (!(ok_group || ok_depthwise)) {
- return;
- }
- size_t pad = kernel / 2;
- size_t kernel_h = kernel;
- size_t kernel_w = kernel;
- param::ConvBias param;
- param.format = param::ConvBias::Format::NCHW88;
- param.stride_h = stride;
- param.stride_w = stride;
- param.pad_h = pad;
- param.pad_w = pad;
- param.nonlineMode = noline_mode;
- auto src_tensor_shape = TensorShape{n, ic / 8, h, w, 8};
- if (ic == 3) {
- src_tensor_shape = TensorShape{n, ic, h, w};
- }
-
- auto weight_tensor_shape =
- TensorShape{oc / 8, ic / 8, kernel_h, kernel_w, 8, 8};
- if (ic == 3) {
- weight_tensor_shape = TensorShape{oc / 8, kernel_h, kernel_w, ic, 8};
- }
-
- auto bias_tensor_shape = TensorShape{};
-
- if (bias_mode == megdnn::BiasMode::BROADCAST_CHANNEL_BIAS) {
- bias_tensor_shape = {1, oc / 8, 1, 1, 8};
- } else if (bias_mode == megdnn::BiasMode::BIAS) {
- TensorLayout dst_layout;
- auto ConvBiasOp = handle->create_operator<ConvBias>();
- ConvBiasOp->param() = param;
- ConvBiasOp->deduce_layout({src_tensor_shape, dtype::Float32()},
- {weight_tensor_shape, dtype::Float32()}, {},
- {}, dst_layout);
- bias_tensor_shape = dst_layout;
- }
-
- if (group == 1) {
- param.sparse = param::ConvBias::Sparse::DENSE;
- } else if (group > 1 && ic / group == 1 && oc / group == 1) {
- param.sparse = param::ConvBias::Sparse::GROUP;
- weight_tensor_shape =
- TensorShape{group / 8, 1, 1, kernel_h, kernel_w, 8};
- } else if (group > 1 && oc / group % 8 == 0 && oc / group > 0 &&
- ic / group % 8 == 0 && ic / group > 0) {
- param.sparse = param::ConvBias::Sparse::GROUP;
- weight_tensor_shape = TensorShape{
- group, oc / group / 8, ic / group / 8, kernel_h, kernel_w, 8,
- 8};
- }
- checker.set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_dtype(2, dtype::Float32())
- .set_dtype(4, dtype::Float32())
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng)
- .set_epsilon(1e-3)
- .set_param(param)
- .execs({src_tensor_shape,
- weight_tensor_shape,
- bias_tensor_shape,
- {},
- {}});
- }
-
- static void x86_correctness_fp32_mkldnn(Handle* handle) {
- Checker<ConvBias> checker(handle);
- UniformIntRNG rng{-127, 127};
-
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "MKLDNN_CONV_FP32"));
-
- for (auto bias_mode :
- {megdnn::BiasMode::NO_BIAS, megdnn::BiasMode::BROADCAST_CHANNEL_BIAS,
- megdnn::BiasMode::BIAS})
- for (auto noline_mode : {param::ConvBias::NonlineMode::IDENTITY,
- param::ConvBias::NonlineMode::SIGMOID,
- param::ConvBias::NonlineMode::H_SWISH})
- for (size_t n : {1, 2})
- for (size_t stride : {1, 2})
- for (size_t kernel : {3, 5, 7})
- for (size_t oc : {8, 16})
- for (size_t ic : {3, 8, 16})
- for (size_t h : {22, 33})
- for (size_t w : {22, 33}) {
- for (size_t group = 1;
- group <= std::min(oc, ic);
- ++group) {
- x86_correctness_fp32_mkldnn_run(
- checker, rng, handle,
- bias_mode, noline_mode, n,
- stride, kernel, oc, ic, h,
- w, group);
- }
- }
- }
-
- TEST_F(X86, CONV_BIAS_DIRECT_MKLDNN_C8) {
- x86_correctness_fp32_mkldnn(handle());
- }
- TEST_F(X86_MULTI_THREADS, CONV_BIAS_DIRECT_MKLDNN_C8) {
- x86_correctness_fp32_mkldnn(handle());
- }
-
- TEST_F(X86, CONV_BIAS_MKL_DNN_MATMUL_INT8) {
- using namespace conv_bias;
-
- std::vector<TestArg> args;
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! no bias
- args.emplace_back(param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel}, TensorShape{});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t ic : {1, 2, 3, 4})
- for (size_t oc : {1, 2, 4})
- for (size_t p : {0, 2})
- for (size_t size : {20, 21, 22, 23, 24})
- for (NonlineMode nonline_mode :
- {NonlineMode::IDENTITY}) {
- run(oc, ic, size, size, kernel, p, nonline_mode);
- }
-
- Checker<ConvBias> checker(handle());
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
- "MKLDNN_MATMUL_INT8"));
- checker.set_epsilon(1);
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::Int8())
- .set_dtype(1, dtype::Int8())
- .set_dtype(2, dtype::Int32())
- .set_dtype(4, dtype::Int32())
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng);
-
- for (auto&& arg : args) {
- checker.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
-
- TEST_F(X86, CONV_BIAS_MKL_DNN_INT8) {
- using namespace conv_bias;
-
- std::vector<TestArg> args;
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! no bias
- args.emplace_back(param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel}, TensorShape{});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t ic : {1, 2, 3, 4})
- for (size_t oc : {1, 2, 4})
- for (size_t p : {0, 2})
- for (size_t size : {20, 22, 24})
- for (NonlineMode nonline_mode :
- {NonlineMode::IDENTITY}) {
- run(oc, ic, size, size, kernel, p, nonline_mode);
- }
-
- Checker<ConvBias> checker(handle());
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>("MKLDNN_INT8"));
- checker.set_epsilon(1);
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::Int8())
- .set_dtype(1, dtype::Int8())
- .set_dtype(2, dtype::Int32())
- .set_dtype(4, dtype::Int32())
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng);
-
- for (auto&& arg : args) {
- checker.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
-
- TEST_F(X86_MULTI_THREADS, CONV_BIAS_MKL_DNN_INT8) {
- using namespace conv_bias;
-
- std::vector<TestArg> args;
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p, NonlineMode nonline_mode) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
- param.nonlineMode = nonline_mode;
-
- //! no bias
- args.emplace_back(param, TensorShape{1, ic, h, w},
- TensorShape{oc, ic, kernel, kernel}, TensorShape{});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t ic : {1, 2, 3, 4})
- for (size_t oc : {1, 2, 4})
- for (size_t p : {0, 2})
- for (size_t size : {20, 22, 24})
- for (NonlineMode nonline_mode :
- {NonlineMode::IDENTITY}) {
- run(oc, ic, size, size, kernel, p, nonline_mode);
- }
-
- Checker<ConvBias> checker(handle());
- checker.set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBiasForward>("MKLDNN_INT8"));
- checker.set_epsilon(1);
- UniformIntRNG rng{-50, 50};
- checker.set_dtype(0, dtype::Int8())
- .set_dtype(1, dtype::Int8())
- .set_dtype(2, dtype::Int32())
- .set_dtype(4, dtype::Int32())
- .set_rng(0, &rng)
- .set_rng(1, &rng)
- .set_rng(2, &rng);
-
- for (auto&& arg : args) {
- checker.set_param(arg.param).exec(
- {arg.src, arg.filter, arg.bias, {}, {}});
- }
- }
- #endif
-
- #if MEGDNN_WITH_BENCHMARK
- namespace {
- void benchmark_impl(const param::ConvBias param,
- std::vector<std::pair<SmallVector<TensorShape>, float>>&
- shapes_and_computation,
- const std::string algo_name, size_t RUNS,
- TaskExecutorConfig&& multi_thread_config,
- TaskExecutorConfig&& single_thread_config,
- std::vector<DType> dtype_v) {
- std::vector<DType> data_type = {dtype::Float32(), dtype::Float32(),
- dtype::Float32(), dtype::Float32()};
-
- std::vector<float> multi_thread_times, single_thread_times;
- {
- auto multi_thread_hanle =
- create_cpu_handle(0, true, &multi_thread_config);
- auto benchmarker = Benchmarker<ConvBias>(multi_thread_hanle.get());
- benchmarker.set_times(RUNS)
- .set_display(false)
- .set_dtype(0, dtype_v[0])
- .set_dtype(1, dtype_v[1])
- .set_dtype(2, dtype_v[2])
- .set_dtype(4, dtype_v[3])
- .set_param(param)
- .set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(
- algo_name.c_str()));
- for (auto shape : shapes_and_computation) {
- multi_thread_times.push_back(benchmarker.exec(shape.first) / RUNS);
- }
- }
- {
- auto single_thread_handle =
- create_cpu_handle(0, true, &single_thread_config);
- auto benchmarker = Benchmarker<ConvBias>(single_thread_handle.get());
- benchmarker.set_times(RUNS)
- .set_display(false)
- .set_dtype(0, dtype_v[0])
- .set_dtype(1, dtype_v[1])
- .set_dtype(2, dtype_v[2])
- .set_dtype(4, dtype_v[3])
- .set_param(param)
- .set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(
- algo_name.c_str()));
- for (auto shape : shapes_and_computation) {
- single_thread_times.push_back(benchmarker.exec(shape.first) / RUNS);
- }
- }
- printf("Benchmark : Multi threads %zu, ", multi_thread_config.nr_thread);
- printf("core_ids:");
- for (size_t i = 0; i < multi_thread_config.affinity_core_set.size(); i++) {
- printf("%zu ", multi_thread_config.affinity_core_set[i]);
- }
- printf(", Single thread core_id %zu\n",
- single_thread_config.affinity_core_set[0]);
- for (size_t i = 0; i < shapes_and_computation.size(); i++) {
- auto shapes = shapes_and_computation[i];
- printf("Bench case: ");
- for (auto&& shape : shapes.first) {
- printf("%s ", shape.to_string().c_str());
- }
- float computations = shapes.second;
- printf("%zu threads gflops: %f,\n single thread gflops: "
- "%f. spead up = %f, speedup/cores=%f\n",
- multi_thread_config.nr_thread,
- computations / multi_thread_times[i],
- computations / single_thread_times[i],
- single_thread_times[i] / multi_thread_times[i],
- single_thread_times[i] / multi_thread_times[i] /
- multi_thread_config.nr_thread);
- }
- }
-
- void benchmark_impl_comp(
- const param::ConvBias param,
- std::vector<std::pair<SmallVector<TensorShape>, float>>&
- shapes_and_computation,
- const std::string algo_name, const std::string algo_name1, size_t RUNS,
- TaskExecutorConfig&& multi_thread_config,
- TaskExecutorConfig&& single_thread_config, std::vector<DType> dtype_v) {
- std::vector<DType> data_type = {dtype::Float32(), dtype::Float32(),
- dtype::Float32(), dtype::Float32()};
-
- std::vector<float> multi_thread_times, single_thread_times;
- {
- auto multi_thread_hanle =
- create_cpu_handle(0, true, &multi_thread_config);
- auto benchmarker = Benchmarker<ConvBias>(multi_thread_hanle.get());
- benchmarker.set_times(RUNS)
- .set_display(false)
- .set_dtype(0, dtype_v[0])
- .set_dtype(1, dtype_v[1])
- .set_dtype(2, dtype_v[2])
- .set_dtype(4, dtype_v[3])
- .set_param(param)
- .set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(
- algo_name.c_str()));
- for (auto shape : shapes_and_computation) {
- multi_thread_times.push_back(benchmarker.exec(shape.first) / RUNS);
- }
- }
- {
- auto single_thread_handle =
- create_cpu_handle(0, true, &single_thread_config);
- auto benchmarker = Benchmarker<ConvBias>(single_thread_handle.get());
- benchmarker.set_times(RUNS)
- .set_display(false)
- .set_dtype(0, dtype_v[0])
- .set_dtype(1, dtype_v[1])
- .set_dtype(2, dtype_v[2])
- .set_dtype(4, dtype_v[3])
- .set_param(param)
- .set_before_exec_callback(
- conv_bias::ConvBiasAlgoChecker<ConvBias>(
- algo_name1.c_str()));
- for (auto shape : shapes_and_computation) {
- single_thread_times.push_back(benchmarker.exec(shape.first) / RUNS);
- }
- }
- printf("Benchmark : Multi threads %zu, ", multi_thread_config.nr_thread);
- printf("core_ids:");
- for (size_t i = 0; i < multi_thread_config.affinity_core_set.size(); i++) {
- printf("%zu ", multi_thread_config.affinity_core_set[i]);
- }
- for (size_t i = 0; i < shapes_and_computation.size(); i++) {
- auto shapes = shapes_and_computation[i];
- printf("Bench case: ");
- for (auto&& shape : shapes.first) {
- printf("%s ", shape.to_string().c_str());
- }
- float computations = shapes.second;
- printf("algo:%s gflops: %f,\n algo:%s gflops: "
- "%f. spead up = %f\n",
- algo_name.c_str(), computations / multi_thread_times[i],
- algo_name1.c_str(), computations / single_thread_times[i],
- single_thread_times[i] / multi_thread_times[i]);
- }
- }
-
- } // namespace
-
- static void benchmark_convbias_chanwise_avx2_int8(uint32_t stride,
- const char* algo) {
- constexpr size_t RUNS = 50;
- param::ConvBias param;
- param.stride_h = stride;
- param.stride_w = stride;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- std::vector<DType> data_type = {dtype::Int8(), dtype::Int8(),
- dtype::Int32(), dtype::Int32()};
-
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t H, size_t W, size_t FS) {
- param.pad_h = FS / 2;
- param.pad_w = FS / 2;
-
- SmallVector<TensorShape> shapes{
- {N, IC, H, W}, {IC, 1, 1, FS, FS}, {}, {}, {}};
- TensorShape dst{N, IC, (H + 2 * param.pad_h - FS) + 1,
- (W + 2 * param.pad_w - FS) + 1};
- float computations = (FS * FS * dst.total_nr_elems() * 2) * 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 112, 112, 7);
- bench_case(1, 144, 56, 56, 7);
- bench_case(1, 192, 28, 28, 7);
- bench_case(1, 384, 28, 28, 7);
- bench_case(1, 576, 14, 14, 7);
- bench_case(1, 960, 7, 7, 7);
-
- bench_case(1, 32, 112, 112, 5);
- bench_case(1, 144, 56, 56, 5);
- bench_case(1, 192, 28, 28, 5);
- bench_case(1, 384, 28, 28, 5);
- bench_case(1, 576, 14, 14, 5);
- bench_case(1, 960, 7, 7, 5);
-
- bench_case(1, 32, 112, 112, 3);
- bench_case(1, 144, 56, 56, 3);
- bench_case(1, 192, 28, 28, 3);
- bench_case(1, 384, 28, 28, 3);
- bench_case(1, 576, 14, 14, 3);
- bench_case(1, 960, 7, 7, 3);
-
- bench_case(1, 32, 112, 112, 2);
- bench_case(1, 144, 56, 56, 2);
- bench_case(1, 192, 28, 28, 2);
- bench_case(1, 384, 28, 28, 2);
- bench_case(1, 576, 14, 14, 2);
- bench_case(1, 960, 7, 7, 2);
-
- std::string algo_name = algo;
- printf("Benchmark %s\n", algo);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- shapes_and_computation.clear();
- }
- TEST_F(X86_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_CHANWISE_AVX2_INT8_S1) {
- benchmark_convbias_chanwise_avx2_int8(
- 1, "X86_CONV_BIAS_CHANWISE_AVX2_INT8_STRIDE1");
- }
-
- TEST_F(X86_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_CHANWISE_AVX2_INT8_S2) {
- benchmark_convbias_chanwise_avx2_int8(
- 2, "X86_CONV_BIAS_CHANWISE_AVX2_INT8_STRIDE2");
- }
-
- TEST_F(X86_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_DIRECT_AVX2_INT8) {
- constexpr size_t RUNS = 50;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.sparse = param::ConvBias::Sparse::DENSE;
-
- std::vector<DType> data_type = {dtype::Int8(), dtype::Int8(),
- dtype::Int32(), dtype::Int32()};
-
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS) {
- param.pad_h = FS / 2;
- param.pad_w = FS / 2;
-
- SmallVector<TensorShape> shapes{
- {N, IC, H, W}, {OC, IC, FS, FS}, {}, {}, {}};
- TensorShape dst{N, OC, (H + 2 * param.pad_h - FS) + 1,
- (W + 2 * param.pad_w - FS) + 1};
- float computations = (IC * FS * FS * dst.total_nr_elems() * 2) * 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 7);
- bench_case(1, 32, 64, 200, 200, 7);
- bench_case(1, 32, 32, 128, 128, 7);
- bench_case(1, 32, 64, 128, 128, 7);
- bench_case(1, 32, 32, 100, 100, 7);
- bench_case(1, 32, 64, 100, 100, 7);
- bench_case(1, 32, 32, 80, 80, 7);
- bench_case(1, 32, 64, 80, 80, 7);
-
- bench_case(1, 32, 32, 200, 200, 5);
- bench_case(1, 32, 64, 200, 200, 5);
- bench_case(1, 32, 32, 128, 128, 5);
- bench_case(1, 32, 64, 128, 128, 5);
- bench_case(1, 32, 32, 100, 100, 5);
- bench_case(1, 32, 64, 100, 100, 5);
- bench_case(1, 32, 32, 80, 80, 5);
- bench_case(1, 32, 64, 80, 80, 5);
-
- bench_case(1, 32, 32, 200, 200, 3);
- bench_case(1, 32, 64, 200, 200, 3);
- bench_case(1, 32, 32, 128, 128, 3);
- bench_case(1, 32, 64, 128, 128, 3);
- bench_case(1, 32, 32, 100, 100, 3);
- bench_case(1, 32, 64, 100, 100, 3);
- bench_case(1, 32, 32, 80, 80, 3);
- bench_case(1, 32, 64, 80, 80, 3);
-
- bench_case(1, 32, 32, 200, 200, 2);
- bench_case(1, 32, 64, 200, 200, 2);
- bench_case(1, 32, 32, 128, 128, 2);
- bench_case(1, 32, 64, 128, 128, 2);
- bench_case(1, 32, 32, 100, 100, 2);
- bench_case(1, 32, 64, 100, 100, 2);
- bench_case(1, 32, 32, 80, 80, 2);
- bench_case(1, 32, 64, 80, 80, 2);
-
- std::string algo_name = "X86_CONV_BIAS_DIRECT_AVX2_INT8_STRIDE1";
- printf("Benchmark X86_CONV_BIAS_DIRECT_AVX2_INT8_STRIDE1 algo\n");
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- shapes_and_computation.clear();
- }
-
- TEST_F(X86_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_8816) {
- constexpr size_t RUNS = 30;
- param::ConvBias param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.sparse = param::ConvBias::Sparse::DENSE;
-
- std::vector<DType> data_type = {dtype::Int8(), dtype::Int8(),
- dtype::Int16(), dtype::Int16()};
-
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS) {
- param.pad_h = FS / 2;
- param.pad_w = FS / 2;
-
- SmallVector<TensorShape> shapes{
- {N, IC, H, W}, {OC, IC, FS, FS}, {}, {}, {}};
- TensorShape dst{N, OC, (H + 2 * param.pad_h - FS) / param.stride_h + 1,
- (W + 2 * param.pad_w - FS) / param.stride_w + 1};
- float computations = (IC * FS * FS * dst.total_nr_elems() * 2) * 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 48, 192, 15, 15, 1);
-
- std::string algo_name = "IM2COLMATMUL:X86_INT8X8X16_AVX2";
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- shapes_and_computation.clear();
- }
-
- TEST_F(X86_BENCHMARK_MULTI_THREADS,
- BENCHMARK_CONVBIAS_DIRECT_AVX2_INT8_STRIDE2) {
- constexpr size_t RUNS = 50;
- param::ConvBias param;
- param.stride_h = 2;
- param.stride_w = 2;
- param.sparse = param::ConvBias::Sparse::DENSE;
-
- std::vector<DType> data_type = {dtype::Int8(), dtype::Int8(),
- dtype::Int32(), dtype::Int32()};
-
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS) {
- param.pad_h = FS / 2;
- param.pad_w = FS / 2;
-
- SmallVector<TensorShape> shapes{
- {N, IC, H, W}, {OC, IC, FS, FS}, {}, {}, {}};
- TensorShape dst{N, OC, (H + 2 * param.pad_h - FS) / param.stride_h + 1,
- (W + 2 * param.pad_w - FS) / param.stride_w + 1};
- float computations = (IC * FS * FS * dst.total_nr_elems() * 2) * 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 7);
- bench_case(1, 32, 64, 200, 200, 7);
- bench_case(1, 32, 32, 128, 128, 7);
- bench_case(1, 32, 64, 128, 128, 7);
- bench_case(1, 32, 32, 100, 100, 7);
- bench_case(1, 32, 64, 100, 100, 7);
- bench_case(1, 32, 32, 80, 80, 7);
- bench_case(1, 32, 64, 80, 80, 7);
-
- bench_case(1, 32, 32, 200, 200, 5);
- bench_case(1, 32, 64, 200, 200, 5);
- bench_case(1, 32, 32, 128, 128, 5);
- bench_case(1, 32, 64, 128, 128, 5);
- bench_case(1, 32, 32, 100, 100, 5);
- bench_case(1, 32, 64, 100, 100, 5);
- bench_case(1, 32, 32, 80, 80, 5);
- bench_case(1, 32, 64, 80, 80, 5);
-
- bench_case(1, 32, 32, 200, 200, 3);
- bench_case(1, 32, 64, 200, 200, 3);
- bench_case(1, 32, 32, 128, 128, 3);
- bench_case(1, 32, 64, 128, 128, 3);
- bench_case(1, 32, 32, 100, 100, 3);
- bench_case(1, 32, 64, 100, 100, 3);
- bench_case(1, 32, 32, 80, 80, 3);
- bench_case(1, 32, 64, 80, 80, 3);
-
- bench_case(1, 32, 32, 200, 200, 2);
- bench_case(1, 32, 64, 200, 200, 2);
- bench_case(1, 32, 32, 128, 128, 2);
- bench_case(1, 32, 64, 128, 128, 2);
- bench_case(1, 32, 32, 100, 100, 2);
- bench_case(1, 32, 64, 100, 100, 2);
- bench_case(1, 32, 32, 80, 80, 2);
- bench_case(1, 32, 64, 80, 80, 2);
-
- std::string algo_name = "X86_CONV_BIAS_DIRECT_AVX2_INT8_STRIDE2";
- printf("Benchmark X86_CONV_BIAS_DIRECT_AVX2_INT8_STRIDE2 algo\n");
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- shapes_and_computation.clear();
- }
-
- TEST_F(X86_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_DIRECTF32) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
- param.sparse = param::ConvBias::Sparse::GROUP;
-
- std::vector<DType> data_type = {dtype::Float32(), dtype::Float32(),
- dtype::Float32(), dtype::Float32()};
-
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS, size_t group) {
- SmallVector<TensorShape> shapes{{N, IC, H, W},
- {group, OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, H, W}};
- TensorShape dst{N, OC, H, W};
- float computations =
- ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 4);
- bench_case(1, 32, 32, 200, 200, 3, 32);
- bench_case(1, 32, 32, 128, 128, 3, 4);
- bench_case(1, 32, 32, 128, 128, 3, 32);
- bench_case(1, 32, 32, 100, 100, 3, 4);
- bench_case(1, 32, 32, 100, 100, 3, 32);
- bench_case(1, 32, 32, 80, 80, 3, 4);
- bench_case(1, 32, 32, 80, 80, 3, 32);
-
- std::string algo_name = "X86_CONV_BIAS_DIRECT_STRIDE1_LARGE_GROUP";
- printf("Benchmark X86_CONV_BIAS_DIRECT_STRIDE1_LARGE_GROUP algo\n");
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- shapes_and_computation.clear();
-
- algo_name = "X86_CONV_BIAS_DIRECT_STRIDE1_SMALL_GROUP";
- printf("Benchmark X86_CONV_BIAS_DIRECT_STRIDE1_SMALL_GROUP algo\n");
- bench_case(1, 32, 32, 200, 200, 3, 1);
- bench_case(1, 32, 32, 128, 128, 3, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1);
- bench_case(1, 32, 32, 80, 80, 3, 1);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- }
-
- TEST_F(X86_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_IM2COL_F32) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
-
- std::vector<DType> data_type = {dtype::Float32(), dtype::Float32(),
- dtype::Float32(), dtype::Float32()};
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS, size_t group) {
- SmallVector<TensorShape> shapes{{N, IC, H, W},
- {OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, H, W}};
- TensorShape dst{N, OC, H, W};
- float computations =
- ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 1);
- bench_case(1, 32, 32, 200, 200, 3, 1);
- bench_case(1, 32, 32, 128, 128, 3, 1);
- bench_case(1, 32, 32, 128, 128, 3, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1);
- bench_case(1, 32, 32, 80, 80, 3, 1);
- bench_case(1, 32, 32, 80, 80, 3, 1);
-
- bench_case(1, 64, 32, 7, 7, 3, 1);
- bench_case(1, 64, 64, 7, 7, 3, 1);
- bench_case(1, 64, 128, 7, 7, 3, 1);
- bench_case(1, 64, 256, 7, 7, 3, 1);
- bench_case(1, 64, 512, 7, 7, 3, 1);
- bench_case(1, 64, 1024, 7, 7, 3, 1);
-
- bench_case(1, 64, 32, 14, 14, 3, 1);
- bench_case(1, 64, 64, 14, 14, 3, 1);
- bench_case(1, 64, 128, 14, 14, 3, 1);
- bench_case(1, 64, 256, 14, 14, 3, 1);
- bench_case(1, 64, 512, 14, 14, 3, 1);
-
- bench_case(1, 64, 1024, 14, 14, 3, 1);
- bench_case(1, 128, 128, 14, 14, 3, 1);
- bench_case(1, 128, 256, 14, 14, 3, 1);
- bench_case(1, 512, 512, 14, 14, 3, 1);
- bench_case(1, 256, 512, 14, 14, 3, 1);
- bench_case(1, 512, 1024, 14, 14, 3, 1);
- bench_case(1, 1024, 1024, 14, 14, 3, 1);
-
- std::string algo_name = "IM2COLMATMUL:X86_F32_BLAS:192";
- printf("Benchmark IM2COLMATMUL:X86_F32_BLAS algo\n");
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- shapes_and_computation.clear();
- }
-
- TEST_F(X86_BENCHMARK_MULTI_THREADS,
- BENCHMARK_CONVBIAS_IM2COL_F32_single_thread) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
-
- std::vector<DType> data_type = {dtype::Float32(), dtype::Float32(),
- dtype::Float32(), dtype::Float32()};
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS, size_t group) {
- SmallVector<TensorShape> shapes{{N, IC, H, W},
- {OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, H, W}};
- TensorShape dst{N, OC, H, W};
- float computations =
- ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 1);
- bench_case(1, 32, 32, 200, 200, 3, 1);
- bench_case(1, 32, 32, 128, 128, 3, 1);
- bench_case(1, 32, 32, 128, 128, 3, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1);
- bench_case(1, 32, 32, 80, 80, 3, 1);
- bench_case(1, 32, 32, 80, 80, 3, 1);
-
- bench_case(1, 64, 32, 7, 7, 3, 1);
- bench_case(1, 64, 64, 7, 7, 3, 1);
- bench_case(1, 64, 128, 7, 7, 3, 1);
- bench_case(1, 64, 256, 7, 7, 3, 1);
- bench_case(1, 64, 512, 7, 7, 3, 1);
- bench_case(1, 64, 1024, 7, 7, 3, 1);
-
- bench_case(1, 64, 32, 14, 14, 3, 1);
- bench_case(1, 64, 64, 14, 14, 3, 1);
- bench_case(1, 64, 128, 14, 14, 3, 1);
- bench_case(1, 64, 256, 14, 14, 3, 1);
- bench_case(1, 64, 512, 14, 14, 3, 1);
-
- bench_case(1, 64, 1024, 14, 14, 3, 1);
- bench_case(1, 128, 128, 14, 14, 3, 1);
- bench_case(1, 128, 256, 14, 14, 3, 1);
- bench_case(1, 512, 512, 14, 14, 3, 1);
- bench_case(1, 256, 512, 14, 14, 3, 1);
- bench_case(1, 512, 1024, 14, 14, 3, 1);
- bench_case(1, 1024, 1024, 14, 14, 3, 1);
-
- std::string algo_name = "IM2COLMATMUL:X86_F32_MKL_PACKA:192";
- std::string algo_name1 = "IM2COLMATMUL:X86_F32_BLAS:192";
- printf("Benchmark IM2COLMATMUL:X86_F32_BLAS algo\n");
- benchmark_impl_comp(param, shapes_and_computation, algo_name, algo_name1,
- RUNS, {1, {4}}, {1, {4}}, data_type);
- benchmark_impl_comp(param, shapes_and_computation, algo_name, algo_name1,
- RUNS, {1, {7}}, {1, {7}}, data_type);
- shapes_and_computation.clear();
- }
-
- TEST_F(X86_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_IM2COL_INT8X8X32) {
- constexpr size_t RUNS = 50;
-
- param::ConvBias param;
- param.pad_h = 1;
- param.pad_w = 1;
- param.stride_h = 1;
- param.stride_w = 1;
-
- std::vector<std::pair<SmallVector<TensorShape>, float>>
- shapes_and_computation;
- auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W,
- size_t FS, size_t group) {
- SmallVector<TensorShape> shapes{{N, IC, H, W},
- {OC / group, IC / group, FS, FS},
- {1, OC, 1, 1},
- {},
- {N, OC, H, W}};
- TensorShape dst{N, OC, H, W};
- float computations =
- ((IC / group) * FS * FS * dst.total_nr_elems() * 2 +
- dst.total_nr_elems()) *
- 1e-6;
- shapes_and_computation.push_back(std::make_pair(shapes, computations));
- };
-
- bench_case(1, 32, 32, 200, 200, 3, 1);
- bench_case(1, 32, 32, 200, 200, 3, 1);
- bench_case(1, 32, 32, 128, 128, 3, 1);
- bench_case(1, 32, 32, 128, 128, 3, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1);
- bench_case(1, 32, 32, 100, 100, 3, 1);
- bench_case(1, 32, 32, 80, 80, 3, 1);
- bench_case(1, 32, 32, 80, 80, 3, 1);
-
- bench_case(1, 64, 32, 7, 7, 3, 1);
- bench_case(1, 64, 64, 7, 7, 3, 1);
- bench_case(1, 64, 128, 7, 7, 3, 1);
- bench_case(1, 64, 256, 7, 7, 3, 1);
- bench_case(1, 64, 512, 7, 7, 3, 1);
- bench_case(1, 64, 1024, 7, 7, 3, 1);
-
- bench_case(1, 64, 32, 14, 14, 3, 1);
- bench_case(1, 64, 64, 14, 14, 3, 1);
- bench_case(1, 64, 128, 14, 14, 3, 1);
- bench_case(1, 64, 256, 14, 14, 3, 1);
- bench_case(1, 64, 512, 14, 14, 3, 1);
-
- bench_case(1, 64, 1024, 14, 14, 3, 1);
- bench_case(1, 128, 128, 14, 14, 3, 1);
- bench_case(1, 128, 256, 14, 14, 3, 1);
- bench_case(1, 512, 512, 14, 14, 3, 1);
- bench_case(1, 256, 512, 14, 14, 3, 1);
- bench_case(1, 512, 1024, 14, 14, 3, 1);
- bench_case(1, 1024, 1024, 14, 14, 3, 1);
-
- std::vector<DType> data_type = {dtype::Int8(), dtype::Int8(),
- dtype::Int32(), dtype::Int32()};
- std::string algo_name = "IM2COLMATMUL:X86_INT8X8X32_AVX2_4X16X2:192";
- // std::string algo_name = "IM2COLMATMUL:X86_INT8X8X32_AVX2_2X4X16";
- // printf("Benchmark IM2COLMATMUL:X86_INT8X8X32_AVX2_4X16X2 algo\n");
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {4}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS,
- {4, {4, 5, 6, 7}}, {1, {7}}, data_type);
- benchmark_impl(param, shapes_and_computation, algo_name, RUNS, {2, {4, 5}},
- {1, {4}}, data_type);
- shapes_and_computation.clear();
- }
-
- namespace {
- std::vector<conv_bias::TestArg> get_winograd_benchmark_args(size_t kernel,
- size_t pack_size) {
- std::vector<conv_bias::TestArg> args;
- auto pack = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t p) {
- if (ic % pack_size != 0 || oc % pack_size != 0)
- return;
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
-
- param::ConvBias param;
- param.mode = param::ConvBias::Mode::CROSS_CORRELATION;
- param.format = param::ConvBias::Format::NCHW88;
- param.sparse = param::ConvBias::Sparse::DENSE;
- param.nonlineMode = param::ConvBias::NonlineMode::RELU;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
-
- args.push_back(conv_bias::TestArg{
- param,
- TensorShape{1, ic / 8, h, w, 8},
- TensorShape{oc / 8, ic / 8, kernel, kernel, 8, 8},
- {1, oc / 8, 1, 1, 8}});
- };
- for (size_t ic : {64, 128, 256}) {
- for (size_t oc : {64, 128, 256}) {
- pack(oc, ic, 56, 56, kernel, kernel / 2);
- pack(oc, ic, 14, 14, kernel, kernel / 2);
- pack(oc, ic, 28, 28, kernel, kernel / 2);
- }
- }
-
- //! conv in vgg16
- pack(512, 512, 15, 15, kernel, kernel / 2);
- pack(512, 256, 15, 15, kernel, kernel / 2);
- pack(256, 256, 29, 29, kernel, kernel / 2);
- pack(256, 128, 29, 29, kernel, kernel / 2);
- pack(128, 128, 57, 57, kernel, kernel / 2);
- pack(128, 64, 57, 57, kernel, kernel / 2);
- pack(64, 64, 56, 56, kernel, kernel / 2);
- pack(128, 128, 28, 28, kernel, kernel / 2);
- pack(512, 512, 14, 14, kernel, kernel / 2);
- return args;
- }
-
- void benchmark_winograd(const char* algo_name, Handle* handle, size_t kernel,
- size_t pack_size) {
- auto&& args = get_winograd_benchmark_args(kernel, pack_size);
- using namespace conv_bias;
- constexpr size_t RUN = 10;
- Benchmarker<ConvBias> benchmark(handle);
- benchmark.set_display(false);
- benchmark.set_times(RUN);
-
- Benchmarker<ConvBias> benchmark_winograd(handle);
- benchmark_winograd.set_display(false);
- benchmark_winograd.set_times(RUN);
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle->create_operator<ConvBias>();
- opr->param() = arg.param;
- opr->deduce_layout({arg.src, dtype::Float32()},
- {arg.filter, dtype::Float32()},
- {arg.bias, dtype::Float32()}, {}, dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 * 8.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- auto used = benchmark.set_param(arg.param).exec(
- {arg.src, arg.filter, {}, {}, {}}) /
- RUN;
-
- benchmark_winograd.set_param(arg.param);
- auto used_winograd =
- algo_benchmark<ConvBias>(benchmark_winograd,
- {arg.src, arg.filter, {}, {}, {}},
- algo_name) /
- RUN;
-
- printf("%s %s: normal: %f ms %f Gflops winograd: %f ms %f GFlops "
- "speedup: "
- "%f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(),
- used, computations / used, used_winograd,
- computations / used_winograd, used / used_winograd);
- }
- }
- } // namespace
-
- TEST_F(X86, BENCHMARK_CONVBIAS_WINOGRAD_F63_8x8) {
- benchmark_winograd("WINOGRAD:X86_F32MK8_8X8:8:6:8", handle(), 3, 8);
- }
-
- TEST_F(X86, BENCHMARK_CONVBIAS_WINOGRAD_F23_8x8) {
- benchmark_winograd("WINOGRAD:X86_F32MK8_8X8:8:2:8", handle(), 3, 8);
- }
-
- #endif
-
- } // namespace test
- } // namespace megdnn
-
- // vim: syntax=cpp.doxygen
|