|
- /**
- * By downloading, copying, installing or using the software you agree to this license.
- * If you do not agree to this license, do not download, install,
- * copy or use the software.
- *
- *
- * License Agreement
- * For Open Source Computer Vision Library
- * (3-clause BSD License)
- *
- * Copyright (C) 2000-2020, Intel Corporation, all rights reserved.
- * Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
- * Copyright (C) 2009-2016, NVIDIA Corporation, all rights reserved.
- * Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.
- * Copyright (C) 2015-2016, OpenCV Foundation, all rights reserved.
- * Copyright (C) 2015-2016, Itseez Inc., all rights reserved.
- * Copyright (C) 2019-2020, Xperience AI, all rights reserved.
- * Third party copyrights are property of their respective owners.
- *
- * Redistribution and use in source and binary forms, with or without modification,
- * are permitted provided that the following conditions are met:
- *
- * * Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- *
- * * Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- *
- * * Neither the names of the copyright holders nor the names of the contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * This software is provided by the copyright holders and contributors "as is" and
- * any express or implied warranties, including, but not limited to, the implied
- * warranties of merchantability and fitness for a particular purpose are disclaimed.
- * In no event shall copyright holders or contributors be liable for any direct,
- * indirect, incidental, special, exemplary, or consequential damages
- * (including, but not limited to, procurement of substitute goods or services;
- * loss of use, data, or profits; or business interruption) however caused
- * and on any theory of liability, whether in contract, strict liability,
- * or tort (including negligence or otherwise) arising in any way out of
- * the use of this software, even if advised of the possibility of such damage.
- *
- * ---------------------------------------------------------------------------
- * \file dnn/src/naive/gaussian_blur/opr_impl.cpp
- *
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * This file has been modified by Megvii ("Megvii Modifications").
- * All Megvii Modifications are Copyright (C) 2014-2021 Megvii Inc. All rights reserved.
- *
- * ---------------------------------------------------------------------------
- */
-
- #include "./opr_impl.h"
-
- #include "src/common/cv/common.h"
- #include "src/common/cv/helper.h"
- #include "src/common/gaussian_blur_helper.h"
- #include "src/naive/handle.h"
-
- namespace megdnn {
- namespace naive {
-
- template <>
- void GaussianBlurImpl::exec_internal<uint8_t>(
- _megdnn_tensor_in src, _megdnn_tensor_out dst) {
- auto N = src.layout.shape[0], IH = src.layout.shape[1], IW = src.layout.shape[2],
- IC = src.layout.shape[3];
-
- using namespace megcv;
-
- Size ksize = Size(param().kernel_height, param().kernel_width);
- Mat<float> kx_(1, ksize.cols(), 1);
- Mat<float> ky_(1, ksize.rows(), 1);
-
- gaussian_blur::createGaussianKernels<float>(
- kx_, ky_, ksize, param().sigma_x, param().sigma_y);
-
- uint32_t kernel_height = ky_.width();
- uint32_t kernel_width = kx_.width();
- Mat<int> kx(1, kernel_width, 1);
- Mat<int> ky(1, kernel_height, 1);
- const uint8_t bits = 8;
- for (size_t i = 0; i < kernel_height; i++) {
- ky.at(0, i, 0) = static_cast<int>(ky_.at(0, i, 0) * (1 << bits));
- }
- for (size_t i = 0; i < kernel_width; i++) {
- kx.at(0, i, 0) = static_cast<int>(kx_.at(0, i, 0) * (1 << bits));
- }
-
- FixedPtCastEx<int, uint8_t> cast_op(2 * bits);
- rep(n, N) rep(h, IH) rep(w, IW) rep(c, IC) {
- int val = 0;
- rep(iy, kernel_height) {
- int y = gaussian_blur::border_interpolate(
- h + iy - kernel_height / 2, IH, param().border_mode);
- rep(ix, kernel_width) {
- int x = gaussian_blur::border_interpolate(
- w + ix - kernel_width / 2, IW, param().border_mode);
-
- //! BORDER_CONSTANT or BORDER_TRANSPARENT
- if (x != -1 && y != -1) {
- val += kx.at(0, ix, 0) * ky.at(0, iy, 0) *
- src.ptr<uint8_t>()
- [n * src.layout.stride[0] +
- y * src.layout.stride[1] +
- x * src.layout.stride[2] +
- c * src.layout.stride[3]];
- }
- }
- }
- dst.ptr<uint8_t>()
- [n * dst.layout.stride[0] + h * dst.layout.stride[1] +
- w * dst.layout.stride[2] + c * dst.layout.stride[3]] = cast_op(val);
- }
- }
-
- template <typename T>
- void GaussianBlurImpl::exec_internal(_megdnn_tensor_in src, _megdnn_tensor_out dst) {
- auto N = src.layout.shape[0], IH = src.layout.shape[1], IW = src.layout.shape[2],
- IC = src.layout.shape[3];
-
- using namespace megcv;
-
- Size ksize = Size(param().kernel_height, param().kernel_width);
- Mat<float> kx(1, ksize.cols(), 1);
- Mat<float> ky(1, ksize.rows(), 1);
-
- gaussian_blur::createGaussianKernels<float>(
- kx, ky, ksize, param().sigma_x, param().sigma_y);
-
- uint32_t kernel_height = ky.width();
- uint32_t kernel_width = kx.width();
- uint32_t half_h = kernel_height / 2;
- uint32_t half_w = kernel_width / 2;
-
- rep(n, N) rep(h, IH) rep(w, IW) rep(c, IC) {
- double val = 0;
- rep(iy, kernel_height) {
- int y = gaussian_blur::border_interpolate(
- h + iy - half_h, IH, param().border_mode);
- rep(ix, kernel_width) {
- int x = gaussian_blur::border_interpolate(
- w + ix - half_w, IW, param().border_mode);
-
- //! BORDER_CONSTANT or BORDER_TRANSPARENT
- if (x != -1 && y != -1) {
- val += kx.at(0, ix, 0) * ky.at(0, iy, 0) *
- src.ptr<T>()
- [n * src.layout.stride[0] +
- y * src.layout.stride[1] +
- x * src.layout.stride[2] +
- c * src.layout.stride[3]];
- }
- }
- }
- dst.ptr<T>()
- [n * dst.layout.stride[0] + h * dst.layout.stride[1] +
- w * dst.layout.stride[2] + c * dst.layout.stride[3]] =
- static_cast<T>(val);
- }
- }
-
- void GaussianBlurImpl::exec(
- _megdnn_tensor_in src, _megdnn_tensor_in dst, _megdnn_workspace /*workspace*/) {
- #define cb(DType) \
- if (src.layout.dtype == DType()) { \
- using ctype = typename DTypeTrait<DType>::ctype; \
- MEGDNN_DISPATCH_CPU_KERN_OPR(exec_internal<ctype>(src, dst)); \
- return; \
- }
- cb(dtype::Uint8);
- cb(dtype::Float32);
- #undef cb
- megdnn_assert_internal(0);
- }
-
- } // namespace naive
- } // namespace megdnn
-
- // vim: syntax=cpp.doxygen
|