|
- #include "src/cuda/conv_bias/opr_impl.h"
- #include "megdnn/dtype.h"
- #include "src/cuda/conv_bias/algo.h"
- #include "src/cuda/conv_bias/helper.h"
- #include "src/cuda/handle.h"
- #include "src/cuda/utils.h"
-
- #include "src/common/algo_chooser.h"
- #include "src/common/conv_bias.h"
-
- #include "src/cuda/cudnn_with_check.h"
-
- namespace megdnn {
- namespace cuda {
-
- void ConvBiasForwardImpl::exec(
- _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_in bias,
- _megdnn_tensor_in z, _megdnn_tensor_out dst,
- const PreprocessedFilter* preprocessed_filter, _megdnn_workspace workspace) {
- check_exec_allow_noncontiguous(
- src.layout, filter.layout, bias.layout, z.layout, dst.layout,
- workspace.size, preprocessed_filter);
- AlgoBase::ExecArgs args(
- this, src, filter, bias, z, dst, workspace, preprocessed_filter);
- auto algo = get_algorithm(
- this, src.layout, filter.layout, bias.layout, z.layout, dst.layout);
- algo->exec(args);
- };
-
- std::vector<ConvBiasForward::Algorithm*> ConvBiasForwardImpl::get_all_algorithms(
- const TensorLayout& src, const TensorLayout& filter, const TensorLayout& bias,
- const TensorLayout& z, const TensorLayout& dst) {
- return megdnn::get_all_algorithms<ConvBiasForwardImpl>(
- {this, src, filter, bias, z, dst});
- }
-
- std::vector<ConvBiasForward::Algorithm*> ConvBiasForwardImpl::get_all_algorithms_safe(
- const TensorLayout& src, const TensorLayout& filter, const TensorLayout& bias,
- const TensorLayout& z, const TensorLayout& dst) {
- return megdnn::get_all_algorithms_safe<ConvBiasForwardImpl>(
- {this, src, filter, bias, z, dst});
- }
-
- ConvBiasForward::Algorithm* ConvBiasForwardImpl::get_algorithm_heuristic(
- const TensorLayout& src, const TensorLayout& filter, const TensorLayout& bias,
- const TensorLayout& z, const TensorLayout& dst, size_t workspace_limit_in_bytes,
- const AlgoAttribute& positive_attr, const AlgoAttribute& negative_attr) {
- using namespace conv_bias;
- AlgoBase::SizeArgs args{this, src, filter, bias, z, dst};
- #if CUDNN_VERSION >= 8004
- if (sm_algo_pack.cudnn_conv_v8.is_available_attribute(
- args, positive_attr, negative_attr, workspace_limit_in_bytes)) {
- return &sm_algo_pack.cudnn_conv_v8;
- }
- if (sm_algo_pack.cudnn_conv_bias_activation_v8.is_available_attribute(
- args, positive_attr, negative_attr, workspace_limit_in_bytes)) {
- return &sm_algo_pack.cudnn_conv_bias_activation_v8;
- }
- #endif
-
- auto dst_layout = *args.dst_layout;
- if (dst_layout.dtype.enumv() != args.bias_layout->dtype.enumv()) {
- dst_layout.dtype = DType();
- args.opr->check_or_deduce_dtype_fwd(
- args.src_layout->dtype, args.filter_layout->dtype, dst_layout.dtype);
- }
- auto conv_args = args;
-
- auto cudnn_conv_bias_act_from_enum_wrapper =
- [](cudnnConvolutionFwdAlgo_t algo) -> AlgoBase* {
- return sm_algo_pack.cudnn_conv_bias_act_from_enum(algo);
- };
-
- auto cudnn_conv_from_enum_wrapper =
- [](cudnnConvolutionFwdAlgo_t algo) -> AlgoBase* {
- return sm_algo_pack.cudnn_conv_from_enum(algo);
- };
-
- auto get_cudnn_algo =
- [this, &conv_args, &args, workspace_limit_in_bytes, positive_attr,
- negative_attr](
- const thin_function<AlgoBase*(cudnnConvolutionFwdAlgo_t)>& cb)
- -> AlgoBase* {
- auto cudnn_handle = cuda::cudnn_handle(this->handle());
- CUDNNForwardDescs desc;
- conv_args.init_conv_desc(desc);
- #if CUDNN_MAJOR >= 7
- int max_count = 0;
- cudnn_check(
- cudnnGetConvolutionForwardAlgorithmMaxCount(cudnn_handle, &max_count));
- SmallVector<cudnnConvolutionFwdAlgoPerf_t> algo_perf(max_count);
- int ret_count = 0;
- cudnn_check(cudnnGetConvolutionForwardAlgorithm_v7(
- cudnn_handle, desc.src_desc.desc, desc.filter_desc.desc,
- desc.conv_desc.conv_desc, desc.dst_desc.desc, max_count, &ret_count,
- algo_perf.data()));
- for (int i = 0; i < ret_count; ++i) {
- auto conv_bias_algo = cb(algo_perf[i].algo);
- if (conv_bias_algo->is_available_attribute(
- args, positive_attr, negative_attr, workspace_limit_in_bytes)) {
- return conv_bias_algo;
- }
- }
- #else
- cudnnConvolutionFwdAlgo_t algo;
- cudnn_check(cudnnGetConvolutionForwardAlgorithm(
- cudnn_handle, desc.src_desc.desc, desc.filter_desc.desc,
- desc.conv_desc.conv_desc, desc.dst_desc.desc,
- CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT, workspace_limit_in_bytes,
- &algo));
-
- auto conv_bias_algo = cb(algo);
- if (conv_bias_algo->is_available_attribute(
- args, positive_attr, negative_attr, workspace_limit_in_bytes))
- return conv_bias_algo;
- #endif
- return nullptr;
- };
-
- auto get_1x1_algo = [workspace_limit_in_bytes, positive_attr,
- negative_attr](const AlgoBase::SizeArgs& size_arg)
- -> ConvBiasForwardImpl::AlgoBase* {
- if (sm_algo_pack.batched_matmul.is_available_attribute(
- size_arg, positive_attr, negative_attr, workspace_limit_in_bytes)) {
- return &sm_algo_pack.batched_matmul;
- }
- return nullptr;
- };
-
- const bool is_chanwise = (args.filter_meta.format == Param::Format::NCHW &&
- args.filter_meta.group == src[1]) ||
- (args.filter_meta.format == Param::Format::NCHW4 &&
- args.filter_meta.group == src[1] * 4) ||
- (args.filter_meta.format == Param::Format::NCHW32 &&
- args.filter_meta.group == src[1] * 32);
- // prefer special chanwise impl since as the group conv of cudnn
- // whose version is lower than v7.5.0 is still slower than our
- // implementation in many channel-wise cases
- const bool slow_cudnn_chanwise_impl =
- CUDNN_MAJOR < 7 || (CUDNN_MAJOR == 7 && CUDNN_MINOR < 5);
- //! choose CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM default for large image
- const int hw_size = src[2] * src[3];
- //! choose dnn when stride != 1, may need calibrate for different cudnn
- //! version
- const bool prefer_dnn_chanwise = slow_cudnn_chanwise_impl ||
- args.filter_meta.stride[0] != 1 ||
- args.filter_meta.stride[1] != 1 || hw_size < 512;
- //! choose for large kernel cases
- size_t fh = args.filter_meta.spatial[0], fw = args.filter_meta.spatial[1];
- size_t hi = src[2], wi = src[3];
- const bool prefer_dnn_lk_implbmm = hi <= 2 * fh && wi <= 2 * fw;
- //! filter size > 9, choose large kernel cases
- const bool prefer_direct_lk = fh > 9 && fw > 9;
- //! avoid bad case in cudnn, check dnn chanwise impl first
- if (is_chanwise) {
- if (prefer_dnn_lk_implbmm) {
- #if CUDA_VERSION >= 10020
- if (sm_algo_pack.f16_implicit_bmm[0].is_available_attribute(
- args, positive_attr, negative_attr, workspace_limit_in_bytes))
- return &sm_algo_pack.f16_implicit_bmm[0];
- #endif
- if (sm_algo_pack.f32_implicit_bmm[0].is_available_attribute(
- args, positive_attr, negative_attr, workspace_limit_in_bytes))
- return &sm_algo_pack.f32_implicit_bmm[0];
- } else if (
- prefer_direct_lk &&
- sm_algo_pack.depthwise_large_filter.is_available_attribute(
- args, positive_attr, negative_attr, workspace_limit_in_bytes)) {
- return &sm_algo_pack.depthwise_large_filter;
- } else if (prefer_dnn_chanwise) {
- if (sm_algo_pack.chanwise.is_available_attribute(
- args, positive_attr, negative_attr, workspace_limit_in_bytes))
- return &sm_algo_pack.chanwise;
- if (sm_algo_pack.chanwise8x8x32.is_available_attribute(
- args, positive_attr, negative_attr, workspace_limit_in_bytes))
- return &sm_algo_pack.chanwise8x8x32;
- } else {
- conv_args.dst_layout = &dst_layout;
- if (is_cudnn_supported(conv_args)) {
- if (auto algo = get_cudnn_algo(cudnn_conv_from_enum_wrapper)) {
- return algo;
- }
- }
- }
- }
-
- //! Prefer CUDNN CONVBIAS.
- bool cudnn_conv_bias_act_supported = false;
- for (auto&& algo : sm_algo_pack.cudnn_conv_bias_activations) {
- if (algo.is_available_attribute(
- args, positive_attr, negative_attr, workspace_limit_in_bytes)) {
- cudnn_conv_bias_act_supported = true;
- break;
- }
- }
-
- if (cudnn_conv_bias_act_supported) {
- if (auto algo = get_cudnn_algo(cudnn_conv_bias_act_from_enum_wrapper))
- return algo;
- }
-
- // modify conv_args dst_layout
- conv_args.dst_layout = &dst_layout;
- if (is_cudnn_supported(conv_args)) {
- if (auto algo = get_cudnn_algo(cudnn_conv_from_enum_wrapper))
- return algo;
- }
-
- if (auto algo = get_1x1_algo(args)) {
- return algo;
- }
-
- if (args.filter_meta.group > 1 &&
- sm_algo_pack.group.is_available_attribute(
- args, positive_attr, negative_attr, workspace_limit_in_bytes)) {
- return &sm_algo_pack.group;
- }
-
- if (sm_algo_pack.fallback_nchw_qs8.is_available_attribute(
- args, positive_attr, negative_attr, workspace_limit_in_bytes)) {
- return &sm_algo_pack.fallback_nchw_qs8;
- }
-
- if (sm_algo_pack.int1_simple.is_available_attribute(
- args, positive_attr, negative_attr, workspace_limit_in_bytes)) {
- return &sm_algo_pack.int1_simple;
- }
-
- if (args.src_layout->dtype.enumv() != DTypeTrait<dtype::BFloat16>::enumv) {
- return megdnn::get_algo_match_attribute<ConvBiasForwardImpl>(
- sm_algo_pack.non_cudnn_algos, args, workspace_limit_in_bytes,
- "cuda convbias fwd", positive_attr, negative_attr);
- } else {
- return megdnn::get_algo_match_attribute<ConvBiasForwardImpl>(
- sm_algo_pack.bfloat16_algos, args, workspace_limit_in_bytes,
- "cuda convbias fwd", positive_attr, negative_attr);
- }
- }
-
- const char* ConvBiasForwardImpl::get_algorithm_set_name() const {
- return "CONV_BIAS_CUDA";
- }
-
- size_t ConvBiasForwardImpl::get_workspace_in_bytes(
- const TensorLayout& src, const TensorLayout& filter, const TensorLayout& bias,
- const TensorLayout& z, const TensorLayout& dst,
- const PreprocessedFilter* preprocessed_filter) {
- TensorLayoutArray layouts{src, filter, bias, z, dst};
- AlgorithmCache::Key key{this->handle(), this->get_opr_type(),
- layouts.data(), layouts.size(),
- &this->param(), sizeof(this->param())};
- auto rst = AlgorithmCache::instance().get(key);
- if (rst.policy.algo.valid()) {
- return rst.workspace;
- }
-
- AlgoBase::SizeArgs args{this, src, filter, bias, z, dst, preprocessed_filter};
- return get_algorithm(this, src, filter, bias, z, dst)->get_workspace_in_bytes(args);
- };
-
- size_t ConvBiasForwardImpl::get_preprocess_workspace_in_bytes(
- const TensorLayout& src, const TensorLayout& filter, const TensorLayout& bias,
- const TensorLayout& z, const TensorLayout& dst) {
- AlgoBase::SizeArgs args{this, src, filter, bias, z, dst};
- return get_algorithm(this, src, filter, bias, z, dst)
- ->get_preprocess_workspace_in_bytes(args);
- }
-
- SmallVector<TensorLayout> ConvBiasForwardImpl::deduce_preprocessed_filter_layout(
- const TensorLayout& src, const TensorLayout& filter, const TensorLayout& bias,
- const TensorLayout& z, const TensorLayout& dst) {
- AlgoBase::SizeArgs args{this, src, filter, bias, z, dst};
- return get_algorithm(this, src, filter, bias, z, dst)
- ->deduce_preprocessed_filter_layout(args);
- }
-
- void ConvBiasForwardImpl::exec_preprocess(
- const TensorLayout& src_layout, _megdnn_tensor_in filter,
- _megdnn_tensor_in bias, const TensorLayout& z_layout,
- const TensorLayout& dst_layout, PreprocessedFilter* preprocessed_filter,
- _megdnn_workspace workspace) {
- TensorND src{nullptr, src_layout}, dst{nullptr, dst_layout}, z{nullptr, z_layout};
- AlgoBase::ExecArgs args(
- this, src, filter, bias, z, dst, workspace, preprocessed_filter);
- auto algo = get_algorithm(
- this, src.layout, filter.layout, bias.layout, z.layout, dst.layout);
- return algo->exec_preprocess(args);
- }
-
- } // namespace cuda
- } // namespace megdnn
-
- // vim: syntax=cpp.doxygen
|