|
- /**
- * \file dnn/test/arm_common/convolution.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- */
- #include "test/arm_common/fixture.h"
-
- #include "test/common/benchmarker.h"
- #include "test/common/checker.h"
- #include "test/common/convolution.h"
- #include "test/common/timer.h"
-
- using namespace megdnn;
- using namespace test;
-
- using Param = param::Convolution;
-
- #if MGB_ENABLE_DOT
- TEST_F(ARM_COMMON, CONVOLUTION_BACKWARD_DATA_INT8_INT8_INT32) {
- Checker<ConvolutionBackwardData> checker(handle());
- using Param = ConvolutionBackwardData::Param;
- Param param;
- auto run = [&](size_t n, size_t ic, size_t oh, size_t ow, size_t oc, size_t fh,
- size_t fw, size_t stride, size_t ph, size_t pw, size_t group = 1) {
- param.pad_h = ph;
- param.pad_w = pw;
- param.stride_h = param.stride_w = stride;
-
- TensorLayout diff = TensorLayout{{n, oc * group, oh, ow}, dtype::Int8()};
- TensorLayout grad;
- TensorLayout filter;
- if (group == 1) {
- param.sparse = Param::Sparse::DENSE;
- filter = {{oc, ic, fh, fw}, dtype::Int8()};
- } else {
- param.sparse = Param::Sparse::GROUP;
- filter = {{group, oc, ic, fh, fw}, dtype::Int8()};
- }
- // TensorLayout grad;
- {
- auto opr = handle()->create_operator<ConvolutionBackwardData>();
- opr->param() = param;
- opr->deduce_layout(filter, diff, grad);
- }
- if (stride == 1) {
- checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardData>(
- "AARCH32_I8x8x32_DECONV_STRIDE1"));
- } else {
- checker.set_before_exec_callback(AlgoChecker<ConvolutionBackwardData>(
- "AARCH32_I8x8x32_DECONV_STRIDE2"));
- }
- checker.set_param(param)
- .set_dtype(0, dtype::Int8())
- .set_dtype(1, dtype::Int8())
- .set_dtype(2, dtype::Int32());
- checker.exec(TensorLayoutArray{filter, diff, grad});
- };
-
- // clang-format off
- for (size_t f : {2, 3, 5, 7})
- for (size_t ih = 1; ih < f+1; ++ih)
- for (size_t iw = 1; iw < 8*f+1; ++iw)
- for (size_t s : {1, 2})
- for (size_t ph : {f/2, f-1})
- for (size_t pw : {f / 2, f - 1})
- if (f >= ph + 1 && f >= pw + 1 && (ih - 1) * s + f > 2 * ph &&
- (iw - 1) * s + f > 2 * pw) {
- run(2, 3, ih, iw, 2, f, f, s, ph, pw, 1);
- }
- // clang-format on
- }
-
- TEST_F(ARM_COMMON, CONVOLUTION_BACKWARD_DATA_QUINT8) {
- Checker<ConvolutionBackwardData> checker(handle());
- using Param = ConvolutionBackwardData::Param;
- Param param;
- auto run = [&](size_t n, size_t ic, size_t oh, size_t ow, size_t oc, size_t fh,
- size_t fw, size_t stride, size_t ph, size_t pw, size_t group = 1) {
- param.pad_h = ph;
- param.pad_w = pw;
- param.stride_h = param.stride_w = stride;
-
- TensorLayout diff = TensorLayout{
- {n, oc * group, oh, ow}, dtype::Quantized8Asymm(1.3f, (uint8_t)129)};
- TensorLayout grad;
- TensorLayout filter;
- if (group == 1) {
- param.sparse = Param::Sparse::DENSE;
- filter = {{oc, ic, fh, fw}, dtype::Quantized8Asymm(1.2f, (uint8_t)127)};
- } else {
- param.sparse = Param::Sparse::GROUP;
- filter = {
- {group, oc, ic, fh, fw},
- dtype::Quantized8Asymm(1.2f, (uint8_t)127)};
- }
- // TensorLayout grad;
- {
- auto opr = handle()->create_operator<ConvolutionBackwardData>();
- opr->param() = param;
- opr->deduce_layout(filter, diff, grad);
- }
- NormalRNG rng(128.f);
-
- if (stride == 1) {
- checker.set_before_exec_callback(
- AlgoChecker<ConvolutionBackwardData>("ARM_COMMON_QUINT8_DIRECT_"
- "DECONV_STRIDE1"));
- } else {
- checker.set_before_exec_callback(
- AlgoChecker<ConvolutionBackwardData>("ARM_COMMON_QUINT8_DIRECT_"
- "DECONV_STRIDE2"));
- }
- checker.set_param(param)
- .set_dtype(0, dtype::Quantized8Asymm(1.2f, (uint8_t)127))
- .set_dtype(1, dtype::Quantized8Asymm(1.3f, (uint8_t)129))
- .set_dtype(2, {});
- checker.set_rng(0, &rng).set_rng(1, &rng);
- checker.exec(TensorLayoutArray{filter, diff, grad});
- };
-
- // clang-format off
- for (size_t f : {2, 3, 5, 7})
- for (size_t ih = 1; ih < f+1; ++ih)
- for (size_t iw = 1; iw < 8*f+1; ++iw)
- for (size_t s : {1, 2})
- for (size_t ph : {f/2, f-1})
- for (size_t pw : {f/2, f-1})
- if (f >= ph + 1 && f >= pw + 1 && (ih - 1) * s + f > 2 * ph &&
- (iw - 1) * s + f > 2 * pw) {
- run(2, 2, ih, iw, 2, f, f, s, ph, pw, 1);
- }
- // clang-format on
- }
- #endif
-
- #if MEGDNN_WITH_BENCHMARK
- #if MGB_ENABLE_DOT
- TEST_F(ARM_COMMON, BENCHMARK_CONVOLUTION_STRIDE1_I8x8x32_WITHDOTPROD) {
- using namespace convolution;
- using Param = param::Convolution;
-
- std::vector<TestArg> args;
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t stride) {
- Param param;
- param.stride_h = stride;
- param.stride_w = stride;
- param.pad_h = kernel / 2;
- param.pad_w = kernel / 2;
-
- args.emplace_back(
- param, TensorShape{1, ic, h, w}, TensorShape{oc, ic, kernel, kernel});
- };
-
- for (size_t kernel : {2, 3, 5, 7}) {
- for (size_t ic : {1, 8, 16, 32, 64}) {
- for (size_t oc : {1, 8, 16, 32, 64}) {
- run(oc, ic, 56, 56, kernel, 1);
- run(oc, ic, 128, 128, kernel, 1);
- run(oc, ic, 256, 256, kernel, 1);
- }
- }
- }
-
- constexpr size_t RUN = 50;
- Benchmarker<Convolution> benchmark(handle());
- benchmark.set_before_exec_callback(
- AlgoChecker<Convolution>("CONVOLUTION_DEFAULT_ARMDOTS8STRD1"));
- benchmark.set_dtype(0, dtype::Int8())
- .set_dtype(1, dtype::Int8())
- .set_dtype(2, dtype::Int32());
- benchmark.set_display(false);
- benchmark.set_times(RUN);
-
- Benchmarker<Convolution> benchmark_float(handle());
- benchmark_float.set_display(false);
- benchmark_float.set_times(RUN);
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle()->create_operator<Convolution>();
- opr->param() = arg.param;
- opr->deduce_layout(
- {arg.src, dtype::Float32()}, {arg.filter, dtype::Float32()},
- dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- auto used_int =
- benchmark.set_param(arg.param).exec({arg.src, arg.filter, {}}) / RUN;
- auto used_float =
- benchmark_float.set_param(arg.param).exec({arg.src, arg.filter, {}}) /
- RUN;
-
- printf("%s %s: int: %f ms %f Gflops float: %f ms %f GFlops speedup: "
- "%f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used_int,
- computations / used_int, used_float, computations / used_float,
- used_float / used_int);
- }
- }
- TEST_F(ARM_COMMON, BENCHMARK_CONVOLUTION_STRIDE2_I8x8x32_WITHDOTPROD) {
- using namespace convolution;
- using Param = param::Convolution;
-
- std::vector<TestArg> args;
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t stride) {
- Param param;
- param.stride_h = stride;
- param.stride_w = stride;
- param.pad_h = kernel / 2;
- param.pad_w = kernel / 2;
-
- args.emplace_back(
- param, TensorShape{1, ic, h, w}, TensorShape{oc, ic, kernel, kernel});
- };
-
- for (size_t kernel : {2, 3, 5, 7}) {
- for (size_t ic : {1, 8, 16, 32, 64}) {
- for (size_t oc : {1, 8, 16, 32, 64}) {
- run(oc, ic, 56, 56, kernel, 2);
- run(oc, ic, 128, 128, kernel, 2);
- run(oc, ic, 256, 256, kernel, 2);
- }
- }
- }
-
- constexpr size_t RUN = 10;
- Benchmarker<Convolution> benchmark(handle());
- benchmark.set_before_exec_callback(
- AlgoChecker<Convolution>("CONVOLUTION_DEFAULT_ARMDOTS8STRD2"));
- benchmark.set_dtype(0, dtype::Int8())
- .set_dtype(1, dtype::Int8())
- .set_dtype(2, dtype::Int32());
- benchmark.set_display(false);
- benchmark.set_times(RUN);
-
- Benchmarker<Convolution> benchmark_float(handle());
- benchmark_float.set_display(false);
- benchmark_float.set_times(RUN);
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle()->create_operator<Convolution>();
- opr->param() = arg.param;
- opr->deduce_layout(
- {arg.src, dtype::Float32()}, {arg.filter, dtype::Float32()},
- dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- auto used_int =
- benchmark.set_param(arg.param).exec({arg.src, arg.filter, {}}) / RUN;
- auto used_float =
- benchmark_float.set_param(arg.param).exec({arg.src, arg.filter, {}}) /
- RUN;
-
- printf("%s %s: int: %f ms %f Gflops float: %f ms %f GFlops speedup: "
- "%f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used_int,
- computations / used_int, used_float, computations / used_float,
- used_float / used_int);
- }
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONVOLUTION_STRIDE1_QUINT8_WITHDOTPROD) {
- using namespace convolution;
- using Param = param::Convolution;
-
- std::vector<TestArg> args;
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t stride) {
- Param param;
- param.stride_h = stride;
- param.stride_w = stride;
- param.pad_h = kernel / 2;
- param.pad_w = kernel / 2;
-
- args.emplace_back(
- param, TensorShape{1, ic, h, w}, TensorShape{oc, ic, kernel, kernel});
- };
-
- for (size_t kernel : {2, 3, 5, 7}) {
- for (size_t ic : {1, 8, 16, 32, 64}) {
- for (size_t oc : {1, 8, 16, 32, 64}) {
- run(oc, ic, 56, 56, kernel, 1);
- run(oc, ic, 128, 128, kernel, 1);
- run(oc, ic, 256, 256, kernel, 1);
- }
- }
- }
-
- constexpr size_t RUN = 50;
- Benchmarker<Convolution> benchmark(handle());
- benchmark.set_dtype(0, dtype::Quantized8Asymm(1.2f, (uint8_t)129))
- .set_dtype(1, dtype::Quantized8Asymm(1.3f, (uint8_t)127))
- .set_dtype(2, {});
-
- benchmark.set_display(false);
- benchmark.set_times(RUN);
- benchmark.set_before_exec_callback(
- AlgoChecker<ConvolutionForward>("CONVOLUTION_DEFAULT_ARMDOTU8STRD1"));
-
- Benchmarker<Convolution> benchmark_float(handle());
- benchmark_float.set_display(false);
- benchmark_float.set_times(RUN);
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle()->create_operator<Convolution>();
- opr->param() = arg.param;
- opr->deduce_layout(
- {arg.src, dtype::Float32()}, {arg.filter, dtype::Float32()},
- dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- auto used_int =
- benchmark.set_param(arg.param).exec({arg.src, arg.filter, {}}) / RUN;
- auto used_float =
- benchmark_float.set_param(arg.param).exec({arg.src, arg.filter, {}}) /
- RUN;
-
- printf("%s %s: int: %f ms %f Gflops float: %f ms %f GFlops speedup: "
- "%f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used_int,
- computations / used_int, used_float, computations / used_float,
- used_float / used_int);
- }
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONVOLUTION_STRIDE2_QUINT8_WITHDOTPROD) {
- using namespace convolution;
- using Param = param::Convolution;
-
- std::vector<TestArg> args;
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t stride) {
- Param param;
- param.stride_h = stride;
- param.stride_w = stride;
- param.pad_h = kernel / 2;
- param.pad_w = kernel / 2;
-
- args.emplace_back(
- param, TensorShape{1, ic, h, w}, TensorShape{oc, ic, kernel, kernel});
- };
-
- for (size_t kernel : {2, 3, 5, 7}) {
- for (size_t ic : {1, 8, 16, 32, 64}) {
- for (size_t oc : {1, 8, 16, 32, 64}) {
- run(oc, ic, 56, 56, kernel, 2);
- run(oc, ic, 128, 128, kernel, 2);
- run(oc, ic, 256, 256, kernel, 2);
- }
- }
- }
-
- constexpr size_t RUN = 50;
- Benchmarker<Convolution> benchmark(handle());
- benchmark.set_dtype(0, dtype::Quantized8Asymm(1.2f, (uint8_t)129))
- .set_dtype(1, dtype::Quantized8Asymm(1.3f, (uint8_t)127))
- .set_dtype(2, {});
-
- benchmark.set_display(false);
- benchmark.set_times(RUN);
- benchmark.set_before_exec_callback(
- AlgoChecker<ConvolutionForward>("CONVOLUTION_DEFAULT_ARMDOTU8STRD2"));
-
- Benchmarker<Convolution> benchmark_float(handle());
- benchmark_float.set_display(false);
- benchmark_float.set_times(RUN);
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle()->create_operator<Convolution>();
- opr->param() = arg.param;
- opr->deduce_layout(
- {arg.src, dtype::Float32()}, {arg.filter, dtype::Float32()},
- dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- auto used_int =
- benchmark.set_param(arg.param).exec({arg.src, arg.filter, {}}) / RUN;
- auto used_float =
- benchmark_float.set_param(arg.param).exec({arg.src, arg.filter, {}}) /
- RUN;
-
- printf("%s %s: int: %f ms %f Gflops float: %f ms %f GFlops speedup: "
- "%f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used_int,
- computations / used_int, used_float, computations / used_float,
- used_float / used_int);
- }
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONVOLUTION_BACKWARD_DATA_INT8_INT8_INT32) {
- using Param = ConvolutionBackwardData::Param;
-
- auto run = [&](const TensorLayoutArray& tensors, Param param) {
- Benchmarker<ConvolutionBackwardData> benchmarker(handle());
- size_t RUN = 50;
- auto time = benchmarker.set_display(false)
- .set_dtype(0, dtype::Int8{})
- .set_dtype(1, dtype::Int8{})
- .set_dtype(2, dtype::Int32{})
- .set_times(RUN)
- .set_param(param)
- .exec(tensors);
-
- size_t OC = tensors[0][0];
- size_t FH = tensors[0][2];
- size_t FW = tensors[0][3];
- float computations = tensors[2].total_nr_elems() * OC * FH * FW * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- printf("time = %f \n perf= %f gops\n", time, computations * RUN / time);
- };
-
- auto profile = [&](size_t n, size_t ic, size_t oh, size_t ow, size_t oc, size_t fh,
- size_t fw, size_t s) {
- Param param;
- param.stride_h = param.stride_w = s;
- printf("oc: %zd ic: %zd w: %zd h: %zd kernel_size: %zd sreide: %zd\n", oc, ic,
- ow, oh, fh, s);
-
- TensorLayout diff = TensorLayout{{n, oc, oh, ow}, dtype::Int8()};
- TensorLayout filter = TensorLayout{{oc, ic, fh, fw}, dtype::Int8()};
- TensorLayout grad;
- {
- auto opr = handle()->create_operator<ConvolutionBackwardData>();
- opr->param() = param;
- opr->deduce_layout(filter, diff, grad);
- }
- run(TensorLayoutArray{filter, diff, grad}, param);
- };
-
- profile(1, 3, 120, 120, 2, 3, 3, 1);
- profile(1, 3, 60, 60, 2, 3, 3, 2);
- profile(1, 3, 224, 224, 2, 5, 5, 1);
- profile(1, 3, 112, 112, 2, 5, 5, 2);
- profile(1, 3, 224, 224, 2, 7, 7, 1);
- profile(1, 3, 112, 112, 2, 7, 7, 2);
- }
- #endif
-
- TEST_F(ARM_COMMON, BENCHMARK_CHANWISE_CONVOLUTION) {
- auto run = [&](const TensorShapeArray& shapes, Param param) {
- auto handle_naive = create_cpu_handle(2);
- Benchmarker<Convolution> benchmarker_naive(handle_naive.get()),
- benchmarker_float(handle()), benchmarker_int(handle());
- benchmarker_int.set_dtype(0, dtype::Int8());
- benchmarker_int.set_dtype(1, dtype::Int8());
- benchmarker_int.set_dtype(2, dtype::Int16());
- size_t RUN = 10;
- auto tfloat = benchmarker_float.set_display(false)
- .set_times(RUN)
- .set_param(param)
- .exec(shapes);
- auto tnaive = benchmarker_naive.set_display(false)
- .set_times(RUN)
- .set_param(param)
- .exec(shapes);
- auto iparam = param;
- auto tint = benchmarker_int.set_display(false)
- .set_times(RUN)
- .set_param(iparam)
- .exec(shapes);
- float int_float_ratio = static_cast<float>(tfloat) / tint;
- printf("naive=%.3fms float=%.3fms int=%.3fms, int/float=%.3f\n", tnaive / RUN,
- tfloat / RUN, tint / RUN, int_float_ratio);
- EXPECT_GE(int_float_ratio, 1.5);
- };
- Param param;
- param.mode = Param::Mode::CROSS_CORRELATION;
- param.sparse = Param::Sparse::GROUP;
- run({{2, 12, 200, 100}, {12, 2, 1, 5, 5}, {}}, param);
- run({{10, 24, 28, 28}, {24, 1, 1, 3, 3}, {}}, param);
- param.stride_h = 2;
- param.stride_w = 2;
- param.pad_h = 1;
- param.pad_w = 1;
- run({{2, 12, 200, 100}, {12, 2, 1, 5, 5}, {}}, param);
- run({{10, 24, 28, 28}, {24, 1, 1, 3, 3}, {}}, param);
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONVOLUTION_INT8X8X32_STRD1_WITHOUT_DOTPROD) {
- // have to remove preferred restrict in usable func before run the benchmark
- using namespace convolution;
-
- std::vector<TestArg> args;
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::Convolution param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
-
- args.emplace_back(
- param, TensorShape{1, ic, h, w}, TensorShape{oc, ic, kernel, kernel});
- };
-
- // compare to float direct conv here,
- // but float direct conv don't support 7x7.
- for (size_t kernel : {2, 3, 5})
- for (size_t ic : {1, 8, 16, 32, 64})
- for (size_t oc : {1, 8, 16, 32, 64})
- for (size_t p : {0, 1, 2, 3}) {
- run(oc, ic, 56, 56, kernel, p);
- run(oc, ic, 128, 128, kernel, p);
- run(oc, ic, 256, 256, kernel, p);
- }
-
- constexpr size_t RUN = 50;
- Benchmarker<Convolution> benchmark(handle());
- benchmark.set_dtype(0, dtype::Int8())
- .set_dtype(1, dtype::Int8())
- .set_dtype(2, dtype::Int32());
- benchmark.set_display(false);
- benchmark.set_times(RUN);
- benchmark.set_before_exec_callback(
- AlgoChecker<ConvolutionForward>("CONVOLUTION_DEFAULT_S8STRD1"));
-
- Benchmarker<Convolution> benchmark_float(handle());
- benchmark_float.set_display(false);
- benchmark_float.set_times(RUN);
- benchmark_float.set_before_exec_callback(
- AlgoChecker<ConvolutionForward>("CONVOLUTION_DEFAULT_F32STRD1"));
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle()->create_operator<Convolution>();
- opr->param() = arg.param;
- opr->deduce_layout(
- {arg.src, dtype::Float32()}, {arg.filter, dtype::Float32()},
- dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- auto used_int =
- benchmark.set_param(arg.param).exec({arg.src, arg.filter, {}}) / RUN;
- auto used_float =
- benchmark_float.set_param(arg.param).exec({arg.src, arg.filter, {}}) /
- RUN;
-
- printf("%s %s: int: %f ms %f Gflops float: %f ms %f GFlops speedup: "
- "%f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used_int,
- computations / used_int, used_float, computations / used_float,
- used_float / used_int);
- }
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONVOLUTION_INT8X8X32_STRD2_WITHOUT_DOTPROD) {
- // have to remove preferred restrict in usable func before run the benchmark
- using namespace convolution;
-
- std::vector<TestArg> args;
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::Convolution param;
- param.stride_h = 2;
- param.stride_w = 2;
- param.pad_h = p;
- param.pad_w = p;
-
- args.emplace_back(
- param, TensorShape{1, ic, h, w}, TensorShape{oc, ic, kernel, kernel});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t ic : {1, 8, 16, 32, 64})
- for (size_t oc : {1, 8, 16, 32, 64})
- for (size_t p : {0, 1, 2, 3}) {
- run(oc, ic, 56, 56, kernel, p);
- run(oc, ic, 128, 128, kernel, p);
- run(oc, ic, 256, 256, kernel, p);
- }
-
- constexpr size_t RUN = 50;
- Benchmarker<Convolution> benchmark(handle());
- benchmark.set_dtype(0, dtype::Int8())
- .set_dtype(1, dtype::Int8())
- .set_dtype(2, dtype::Int32());
- benchmark.set_display(false);
- benchmark.set_times(RUN);
- benchmark.set_before_exec_callback(
- AlgoChecker<ConvolutionForward>("CONVOLUTION_DEFAULT_S8STRD2"));
-
- Benchmarker<Convolution> benchmark_float(handle());
- benchmark_float.set_display(false);
- benchmark_float.set_times(RUN);
- #if MEGDNN_AARCH64
- benchmark_float.set_before_exec_callback(
- AlgoChecker<ConvolutionForward>("CONVOLUTION_DEFAULT_ARMV8F32STRD2"));
- #else
- benchmark_float.set_before_exec_callback(
- AlgoChecker<ConvolutionForward>("CONVOLUTION_DEFAULT_F32STRD2"));
- #endif
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle()->create_operator<Convolution>();
- opr->param() = arg.param;
- opr->deduce_layout(
- {arg.src, dtype::Float32()}, {arg.filter, dtype::Float32()},
- dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- auto used_int =
- benchmark.set_param(arg.param).exec({arg.src, arg.filter, {}}) / RUN;
- auto used_float =
- benchmark_float.set_param(arg.param).exec({arg.src, arg.filter, {}}) /
- RUN;
-
- printf("%s %s: int: %f ms %f Gflops float: %f ms %f GFlops speedup: "
- "%f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used_int,
- computations / used_int, used_float, computations / used_float,
- used_float / used_int);
- }
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONVOLUTION_INT8X8X32_STRD1_WITHOUT_DOTPROD_TO_MATMUL) {
- // have to remove preferred restrict in usable func before run the benchmark
- using namespace convolution;
-
- std::vector<TestArg> args;
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::Convolution param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
-
- args.emplace_back(
- param, TensorShape{1, ic, h, w}, TensorShape{oc, ic, kernel, kernel});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t p : {0, 1, 2})
- for (size_t ic : {1, 3, 4, 8, 12, 16, 32, 48, 64})
- for (size_t oc : {1, 3, 4, 8, 12, 16, 32, 48, 64})
- for (size_t size : {56, 128, 256}) {
- run(oc, ic, size, size, kernel, p);
- }
-
- constexpr size_t RUN = 50;
- Benchmarker<Convolution> benchmark_conv(handle());
- benchmark_conv.set_dtype(0, dtype::Int8())
- .set_dtype(1, dtype::Int8())
- .set_dtype(2, dtype::Int32());
- benchmark_conv.set_display(false);
- benchmark_conv.set_times(RUN);
- benchmark_conv.set_before_exec_callback(
- AlgoChecker<ConvolutionForward>("CONVOLUTION_DEFAULT_S8STRD1"));
-
- Benchmarker<Convolution> benchmark_matmul(handle());
- benchmark_matmul.set_dtype(0, dtype::Int8())
- .set_dtype(1, dtype::Int8())
- .set_dtype(2, dtype::Int32());
- benchmark_matmul.set_display(false);
- benchmark_matmul.set_times(RUN);
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle()->create_operator<Convolution>();
- opr->param() = arg.param;
- opr->deduce_layout(
- {arg.src, dtype::Float32()}, {arg.filter, dtype::Float32()},
- dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- auto used_conv =
- benchmark_conv.set_param(arg.param).exec({arg.src, arg.filter, {}}) /
- RUN;
- auto used_matmul =
- benchmark_matmul.set_param(arg.param).exec({arg.src, arg.filter, {}}) /
- RUN;
-
- printf("%s %s: conv: %f ms %f Gflops matmul: %f ms %f GFlops speedup: "
- "%f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used_conv,
- computations / used_conv, used_matmul, computations / used_matmul,
- used_matmul / used_conv);
- }
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONVOLUTION_INT8X8X32_STRD2_WITHOUT_DOTPROD_TO_MATMUL) {
- // have to remove preferred restrict in usable func before run the benchmark
- using namespace convolution;
-
- std::vector<TestArg> args;
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::Convolution param;
- param.stride_h = 2;
- param.stride_w = 2;
- param.pad_h = p;
- param.pad_w = p;
-
- args.emplace_back(
- param, TensorShape{1, ic, h, w}, TensorShape{oc, ic, kernel, kernel});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t p : {0, 1, 2})
- for (size_t ic : {1, 3, 4, 8, 12, 16, 32, 48, 64})
- for (size_t oc : {1, 3, 4, 8, 12, 16, 32, 48, 64})
- for (size_t size : {56, 128, 256}) {
- run(oc, ic, size, size, kernel, p);
- }
-
- constexpr size_t RUN = 50;
- Benchmarker<Convolution> benchmark_conv(handle());
- benchmark_conv.set_dtype(0, dtype::Int8())
- .set_dtype(1, dtype::Int8())
- .set_dtype(2, dtype::Int32());
- benchmark_conv.set_display(false);
- benchmark_conv.set_times(RUN);
- benchmark_conv.set_before_exec_callback(
- AlgoChecker<ConvolutionForward>("CONVOLUTION_DEFAULT_S8STRD2"));
-
- Benchmarker<Convolution> benchmark_matmul(handle());
- benchmark_matmul.set_dtype(0, dtype::Int8())
- .set_dtype(1, dtype::Int8())
- .set_dtype(2, dtype::Int32());
- benchmark_matmul.set_display(false);
- benchmark_matmul.set_times(RUN);
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle()->create_operator<Convolution>();
- opr->param() = arg.param;
- opr->deduce_layout(
- {arg.src, dtype::Float32()}, {arg.filter, dtype::Float32()},
- dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- auto used_conv =
- benchmark_conv.set_param(arg.param).exec({arg.src, arg.filter, {}}) /
- RUN;
- auto used_matmul =
- benchmark_matmul.set_param(arg.param).exec({arg.src, arg.filter, {}}) /
- RUN;
-
- printf("%s %s: conv: %f ms %f Gflops matmul: %f ms %f GFlops speedup: "
- "%f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used_conv,
- computations / used_conv, used_matmul, computations / used_matmul,
- used_matmul / used_conv);
- }
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONVOLUTION_QUINT8X8X32_STRD1_WITHOUT_DOTPROD) {
- // have to remove preferred restrict in usable func before run the benchmark
- using namespace convolution;
-
- std::vector<TestArg> args;
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::Convolution param;
- param.stride_h = 1;
- param.stride_w = 1;
- param.pad_h = p;
- param.pad_w = p;
-
- args.emplace_back(
- param, TensorShape{1, ic, h, w}, TensorShape{oc, ic, kernel, kernel});
- };
-
- // compare to float direct conv here,
- // but float direct conv don't support 7x7.
- for (size_t kernel : {2, 3, 5})
- for (size_t ic : {1, 8, 16, 32, 64})
- for (size_t oc : {1, 8, 16, 32, 64})
- for (size_t p : {0, 1, 2, 3}) {
- run(oc, ic, 56, 56, kernel, p);
- run(oc, ic, 128, 128, kernel, p);
- run(oc, ic, 256, 256, kernel, p);
- }
-
- constexpr size_t RUN = 50;
- Benchmarker<Convolution> benchmark(handle());
- benchmark.set_dtype(0, dtype::Quantized8Asymm(0.1f, static_cast<uint8_t>(120)))
- .set_dtype(1, dtype::Quantized8Asymm(0.1f, static_cast<uint8_t>(120)))
- .set_dtype(2, dtype::QuantizedS32(0.01f));
- benchmark.set_display(false);
- benchmark.set_times(RUN);
- benchmark.set_before_exec_callback(
- AlgoChecker<ConvolutionForward>("CONVOLUTION_DEFAULT_QU8STRD1"));
-
- Benchmarker<Convolution> benchmark_float(handle());
- benchmark_float.set_display(false);
- benchmark_float.set_times(RUN);
- benchmark_float.set_before_exec_callback(
- AlgoChecker<ConvolutionForward>("CONVOLUTION_DEFAULT_F32STRD1"));
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle()->create_operator<Convolution>();
- opr->param() = arg.param;
- opr->deduce_layout(
- {arg.src, dtype::Float32()}, {arg.filter, dtype::Float32()},
- dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- auto used_int =
- benchmark.set_param(arg.param).exec({arg.src, arg.filter, {}}) / RUN;
- auto used_float =
- benchmark_float.set_param(arg.param).exec({arg.src, arg.filter, {}}) /
- RUN;
-
- printf("%s %s: int: %f ms %f Gflops float: %f ms %f GFlops speedup: "
- "%f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used_int,
- computations / used_int, used_float, computations / used_float,
- used_float / used_int);
- }
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONVOLUTION_QUINT8X8X32_STRD2_WITHOUT_DOTPROD) {
- // have to remove preferred restrict in usable func before run the benchmark
- using namespace convolution;
-
- std::vector<TestArg> args;
- auto run = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel, size_t p) {
- if (w + 2 * p < kernel || h + 2 * p < kernel)
- return;
- param::Convolution param;
- param.stride_h = 2;
- param.stride_w = 2;
- param.pad_h = p;
- param.pad_w = p;
-
- args.emplace_back(
- param, TensorShape{1, ic, h, w}, TensorShape{oc, ic, kernel, kernel});
- };
-
- for (size_t kernel : {2, 3, 5, 7})
- for (size_t ic : {1, 8, 16, 32, 64})
- for (size_t oc : {1, 8, 16, 32, 64})
- for (size_t p : {0, 1, 2, 3}) {
- run(oc, ic, 56, 56, kernel, p);
- run(oc, ic, 128, 128, kernel, p);
- run(oc, ic, 256, 256, kernel, p);
- }
-
- constexpr size_t RUN = 50;
- Benchmarker<Convolution> benchmark(handle());
- benchmark.set_dtype(0, dtype::Quantized8Asymm(0.1f, static_cast<uint8_t>(120)))
- .set_dtype(1, dtype::Quantized8Asymm(0.1f, static_cast<uint8_t>(120)))
- .set_dtype(2, dtype::QuantizedS32(0.01f));
- benchmark.set_display(false);
- benchmark.set_times(RUN);
- benchmark.set_before_exec_callback(
- AlgoChecker<ConvolutionForward>("CONVOLUTION_DEFAULT_QU8STRD2"));
-
- Benchmarker<Convolution> benchmark_float(handle());
- benchmark_float.set_display(false);
- benchmark_float.set_times(RUN);
- #if MEGDNN_AARCH64
- benchmark_float.set_before_exec_callback(
- AlgoChecker<ConvolutionForward>("CONVOLUTION_DEFAULT_ARMV8F32STRD2"));
- #else
- benchmark_float.set_before_exec_callback(
- AlgoChecker<ConvolutionForward>("CONVOLUTION_DEFAULT_F32STRD2"));
- #endif
-
- for (auto&& arg : args) {
- TensorLayout dst_layout;
- auto opr = handle()->create_operator<Convolution>();
- opr->param() = arg.param;
- opr->deduce_layout(
- {arg.src, dtype::Float32()}, {arg.filter, dtype::Float32()},
- dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * arg.filter[1] *
- arg.filter[2] * arg.filter[3] * 2.0 /
- (1024 * 1024 * 1024) * 1e3;
-
- auto used_int =
- benchmark.set_param(arg.param).exec({arg.src, arg.filter, {}}) / RUN;
- auto used_float =
- benchmark_float.set_param(arg.param).exec({arg.src, arg.filter, {}}) /
- RUN;
-
- printf("%s %s: int: %f ms %f Gflops float: %f ms %f GFlops speedup: "
- "%f\n",
- arg.src.to_string().c_str(), arg.filter.to_string().c_str(), used_int,
- computations / used_int, used_float, computations / used_float,
- used_float / used_int);
- }
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONVOLUTION_INT8_INT8_INT16) {
- using Param = param::Convolution;
- auto run = [&](const TensorShapeArray& shapes, Param param) {
- TensorLayoutArray layouts;
- layouts.emplace_back(shapes[0], dtype::Int8());
- layouts.emplace_back(shapes[1], dtype::Int8());
- layouts.emplace_back(shapes[2], dtype::Int16());
- Benchmarker<Convolution> benchmarker_cpu(handle()), benchmarker_float(handle());
- benchmarker_cpu.set_dtype(0, dtype::Int8());
- benchmarker_cpu.set_dtype(1, dtype::Int8());
- benchmarker_cpu.set_dtype(2, dtype::Int16());
- auto iparam = param;
- size_t RUN = 10;
- auto t2 = benchmarker_cpu.set_display(false)
- .set_times(RUN)
- .set_param(iparam)
- .execl(layouts);
- auto t4 = benchmarker_float.set_display(false)
- .set_times(RUN)
- .set_param(param)
- .exec(shapes);
- auto speedup = t4 / t2;
- std::cout << "src=" << shapes[0].to_string()
- << " filter=" << shapes[1].to_string() << " stride=" << param.stride_h
- << " float=" << t4 << "ms"
- << " int=" << t2 << "ms"
- << " speedup=" << speedup << std::endl;
- ASSERT_GE(speedup, 1);
- };
- /*
- for (size_t s: {1, 2})
- for (size_t k: {3})
- for (size_t c: {16})
- for (size_t h = 20; h <= 60; ++h)
- {
- Param param;
- param.stride_h = param.stride_w = s;
- run({{1, c, h, h}, {c, c, k, k}, {}}, param);
- }
-
- for (size_t s: {1})
- for (size_t k: {1})
- for (size_t c: {16})
- for (size_t h = 16; h <= 1024; h*=2)
- {
- Param param;
- param.stride_h = param.stride_w = s;
- run({{1, c, h, h}, {c, c, k, k}, {}}, param);
- }
- */
- for (size_t s : {1}) {
- Param param;
- param.stride_h = param.stride_w = s;
-
- run({{2, 3, 480, 270}, {12, 3, 1, 1}, {}}, param);
- run({{2, 12, 240, 135}, {48, 12, 1, 1}, {}}, param);
- run({{2, 16, 240, 135}, {4, 16, 1, 1}, {}}, param);
- run({{2, 4, 240, 135}, {16, 4, 1, 1}, {}}, param);
- run({{2, 16, 240, 135}, {8, 16, 1, 1}, {}}, param);
- run({{2, 8, 120, 68}, {32, 8, 1, 1}, {}}, param);
- run({{2, 32, 120, 68}, {8, 32, 1, 1}, {}}, param);
- run({{2, 64, 60, 34}, {16, 64, 1, 1}, {}}, param);
- }
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONVOLUTION_INT8_INT8_INT32) {
- using Param = param::Convolution;
- auto run = [&](const TensorShapeArray& shapes, Param param) {
- TensorLayoutArray layouts;
- layouts.emplace_back(shapes[0], dtype::Int8());
- layouts.emplace_back(shapes[1], dtype::Int8());
- layouts.emplace_back(shapes[2], dtype::Int32());
- Benchmarker<Convolution> benchmarker_cpu(handle()), benchmarker_float(handle());
- benchmarker_cpu.set_dtype(0, dtype::Int8());
- benchmarker_cpu.set_dtype(1, dtype::Int8());
- benchmarker_cpu.set_dtype(2, dtype::Int32());
- auto iparam = param;
- size_t RUN = 10;
- auto t2 = benchmarker_cpu.set_display(false)
- .set_times(RUN)
- .set_param(iparam)
- .execl(layouts);
- auto t4 = benchmarker_float.set_display(false)
- .set_times(RUN)
- .set_param(param)
- .exec(shapes);
- auto speedup = t4 / t2;
- std::cout << "src=" << shapes[0].to_string()
- << " filter=" << shapes[1].to_string() << " stride=" << param.stride_h
- << " float=" << t4 << "ms"
- << " int=" << t2 << "ms"
- << " speedup=" << speedup << std::endl;
- ASSERT_GE(speedup, 1);
- };
- for (size_t s : {1, 2})
- for (size_t k : {3})
- for (size_t c : {16})
- for (size_t h = 20; h <= 60; ++h) {
- Param param;
- param.stride_h = param.stride_w = s;
- run({{1, c, h, h}, {c, c, k, k}, {}}, param);
- }
-
- for (size_t s : {1})
- for (size_t k : {1})
- for (size_t c : {16})
- for (size_t h = 16; h <= 1024; h *= 2) {
- Param param;
- param.stride_h = param.stride_w = s;
- run({{1, c, h, h}, {c, c, k, k}, {}}, param);
- }
- for (size_t s : {1}) {
- Param param;
- param.stride_h = param.stride_w = s;
-
- run({{2, 3, 480, 270}, {12, 3, 1, 1}, {}}, param);
- run({{2, 12, 240, 135}, {48, 12, 1, 1}, {}}, param);
- run({{2, 16, 240, 135}, {4, 16, 1, 1}, {}}, param);
- run({{2, 4, 240, 135}, {16, 4, 1, 1}, {}}, param);
- run({{2, 16, 240, 135}, {8, 16, 1, 1}, {}}, param);
- run({{2, 8, 120, 68}, {32, 8, 1, 1}, {}}, param);
- run({{2, 32, 120, 68}, {8, 32, 1, 1}, {}}, param);
- run({{2, 64, 60, 34}, {16, 64, 1, 1}, {}}, param);
- }
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONVOLUTION_DIRECT) {
- using Param = param::Convolution;
- Benchmarker<Convolution> benchmarker_float(handle());
- Benchmarker<Convolution> benchmarker_half(handle());
- const size_t RUNS = 10;
- benchmarker_float.set_display(false)
- .set_times(RUNS)
- .set_dtype(0, dtype::Float32{})
- .set_dtype(1, dtype::Float32{})
- .set_dtype(2, dtype::Float32{})
- .set_before_exec_callback(
- AlgoChecker<Convolution>("CONVOLUTION_DEFAULT_F32DIRECT"));
- benchmarker_half.set_display(false)
- .set_times(RUNS)
- .set_dtype(0, dtype::Float16{})
- .set_dtype(1, dtype::Float16{})
- .set_dtype(2, dtype::Float16{})
- .set_before_exec_callback(
- AlgoChecker<Convolution>("CONVOLUTION_DEFAULT_F16DIRECT"));
-
- auto run = [&](const TensorShapeArray& shapes, Param param) {
- auto tfloat = benchmarker_float.set_param(param).exec(shapes) / RUNS;
- auto thalf = benchmarker_half.set_param(param).exec(shapes) / RUNS;
-
- TensorLayout dst_layout;
- auto opr = handle()->create_operator<Convolution>();
- opr->param() = param;
- opr->deduce_layout(
- {shapes[0], dtype::Float32()}, {shapes[1], dtype::Float32()},
- dst_layout);
- //! dst.nr_elems * IC * FH * FW * 2
- float computations = dst_layout.total_nr_elems() * shapes[1][1] * shapes[1][2] *
- shapes[1][3] * 2.0 / (1024 * 1024 * 1024);
- printf("run:%s %s float: %f ms %f Gflops VS half: %f ms %f Gflops "
- "speepup: %f\n",
- shapes[0].to_string().c_str(), shapes[1].to_string().c_str(), tfloat,
- computations / tfloat * 1e3, thalf, computations / thalf * 1e3,
- tfloat / thalf);
- };
-
- auto profile = [&](size_t n, size_t oc, size_t ic, size_t w, size_t h,
- size_t kernel, size_t stride) {
- Param param;
- param.stride_h = stride;
- param.stride_w = stride;
- param.pad_h = kernel / 2;
- param.pad_w = kernel / 2;
-
- run({{n, ic, h, w}, {oc, ic, kernel, kernel}, {}}, param);
- };
-
- for (size_t kernel : {1, 2, 3, 4, 5, 6, 7}) {
- for (size_t ic : {12}) {
- for (size_t oc : {4}) {
- for (size_t size : {17, 28, 32, 34, 64, 112, 256}) {
- profile(1, oc, ic, size, size, kernel, 1);
- }
- }
- }
- }
- for (auto k : {1, 2, 3, 4, 5, 6, 7}) {
- profile(2, 12, 3, 480, 270, k, 1);
- profile(2, 48, 12, 240, 135, k, 1);
- profile(2, 4, 16, 240, 135, k, 1);
- profile(2, 16, 4, 240, 135, k, 1);
- profile(2, 8, 16, 240, 135, k, 1);
- profile(2, 32, 8, 240, 135, k, 1);
- profile(2, 8, 32, 120, 68, k, 1);
- profile(2, 16, 64, 60, 34, k, 1);
- }
- }
-
- TEST_F(ARM_COMMON, BENCHMARK_CONVOLUTION_STRIDE1) {
- using Param = param::Convolution;
- auto run_fp32 = [&](const TensorShapeArray& shapes, Param param) {
- Benchmarker<Convolution> benchmarker_float(handle());
- size_t RUN = 50;
- auto tfloat = benchmarker_float.set_display(false)
- .set_dtype(0, dtype::Float32())
- .set_dtype(1, dtype::Float32())
- .set_dtype(2, dtype::Float32())
- .set_before_exec_callback(AlgoChecker<Convolution>(
- "CONVOLUTION_DEFAULT_F32STRD1"))
- .set_times(RUN)
- .set_param(param)
- .exec(shapes);
- size_t IC = shapes[1][1];
- size_t FH = shapes[1][2];
- size_t FW = shapes[1][3];
- TensorLayout dst_layout;
- auto opr = handle()->create_operator<Convolution>();
- opr->param() = param;
- opr->deduce_layout(
- {shapes[0], dtype::Float32()}, {shapes[1], dtype::Float32()},
- dst_layout);
- printf("fp32 flops: %.3f mflops\n",
- (IC * dst_layout.total_nr_elems() * FH * FW * 2) /
- (tfloat / RUN * 1000));
- };
- #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- auto run_fp16 = [&](const TensorShapeArray& shapes, Param param) {
- Benchmarker<Convolution> benchmarker_float(handle());
- size_t RUN = 50;
- auto tfloat = benchmarker_float.set_display(false)
- .set_dtype(0, dtype::Float16())
- .set_dtype(1, dtype::Float16())
- .set_dtype(2, dtype::Float16())
- .set_before_exec_callback(AlgoChecker<Convolution>(
- "CONVOLUTION_DEFAULT_F16STRD1"))
- .set_times(RUN)
- .set_param(param)
- .exec(shapes);
- size_t IC = shapes[1][1];
- size_t FH = shapes[1][2];
- size_t FW = shapes[1][3];
- TensorLayout dst_layout;
- auto opr = handle()->create_operator<Convolution>();
- opr->param() = param;
- opr->deduce_layout(
- {shapes[0], dtype::Float16()}, {shapes[1], dtype::Float16()},
- dst_layout);
- printf("fp16 flops: %.3f mflops\n",
- (IC * dst_layout.total_nr_elems() * FH * FW * 2) /
- (tfloat / RUN * 1000));
- };
- #endif
- auto profile = [&](size_t oc, size_t ic, size_t w, size_t h, size_t kernel,
- size_t stride) {
- Param param;
- param.stride_h = stride;
- param.stride_w = stride;
- param.pad_h = kernel / 2;
- param.pad_w = kernel / 2;
- printf("oc: %zd ic: %zd w: %zd h: %zd stride: %zd kernel_size: %zd\n", oc, ic,
- w, h, stride, kernel);
-
- run_fp32({{1, ic, h, w}, {oc, ic, kernel, kernel}, {}}, param);
- #if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- run_fp16({{1, ic, h, w}, {oc, ic, kernel, kernel}, {}}, param);
- #endif
- };
-
- for (size_t kernel : {2, 3, 5}) {
- for (size_t ic : {3, 6, 12, 24}) {
- for (size_t oc : {3, 6, 12, 24}) {
- for (size_t size : {4, 7, 8, 14, 16, 17, 28, 32, 34, 64, 112}) {
- profile(oc, ic, size, size, kernel, 1);
- }
- }
- }
- }
- }
- #endif
-
- // vim: syntax=cpp.doxygen
|