|
- /**
- * \file dnn/test/common/convolution3d.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- */
-
- #include "test/common/checker.h"
- #include "test/common/convolution3d.h"
- #include <chrono>
- #include <unordered_set>
- #include <sstream>
-
- using namespace megdnn;
- using namespace test;
- using namespace convolution3d;
-
- std::vector<TestArg> convolution3d::get_1x1x1_args() {
- std::vector<TestArg> args;
- param::Convolution3D param;
- param.mode = param::Convolution3D::Mode::CROSS_CORRELATION;
- // clang-format off
- for (size_t batch_size: {4, 8})
- for (size_t ic: {1, 4, 8})
- for (size_t oc: {ic})
- for (size_t id: {4, 16, 64})
- for (size_t ih : {id})
- for (size_t iw : {id}) {
- args.emplace_back(param, TensorShape{batch_size, ic, id, ih, iw},
- TensorShape{oc, ic, 1, 1, 1});
- }
- // clang-format on
- return args;
- }
- #if MEGDNN_WITH_BENCHMARK
- std::vector<TestArg> convolution3d::get_speed_test_args() {
- std::vector<TestArg> args;
- std::vector<std::pair<size_t, size_t>> range;
- range.push_back(std::pair<size_t, size_t> (10, 16));
- // clang-format off
- for (size_t n: {64})
- for (size_t id: {18, 32, 64})
- for (size_t ih: {id})
- for (size_t iw: {18, 64, 128})
- for (size_t oc: {16, 64})
- for (size_t ic: {oc})
- for (size_t fd: {1, 2, 3})
- for (size_t fh: {fd})
- for (size_t fw: {fh})
- for (size_t pd: {0, 1})
- for (size_t sd: {1, 2, 3})
- for (size_t dd: {1, 3})
- for (size_t cw: {false})
- for (bool xcorr: {false, true}) {
- param::Convolution3D param;
- param.mode = xcorr ? param::Convolution3D::Mode::CROSS_CORRELATION
- : param::Convolution3D::Mode::CONVOLUTION;
- param.stride_d = param.stride_h = param.stride_w = sd;
- param.pad_d = param.pad_h = param.pad_w = pd;
- param.dilate_d = param.dilate_h = param.dilate_w = dd;
- if (cw)
- param.sparse = param::Convolution3D::Sparse::GROUP;
- args.emplace_back(param, TensorShape{n, ic, id, ih, iw},
- !cw ? TensorShape{oc, ic, fd, fh, fw}
- : TensorShape{ic, oc, 1, fd, fh, fw});
- }
- // clang-format on
- return args;
- }
- #endif
- std::vector<TestArg> convolution3d::get_args() {
- std::vector<TestArg> args;
- std::vector<std::pair<size_t, size_t>> range;
- range.push_back(std::pair<size_t, size_t> (11, 13));
- // clang-format off
- #if 1
- for (size_t n: {4})
- for (size_t id: {12, 16})
- for (size_t ih: {id})
- for (size_t iw: {16})
- for (size_t ic: {5, 10})
- for (size_t oc: {ic})
- for (size_t fd: {1,2,3})
- for (size_t fh: {fd})
- for (size_t fw: {fh})
- for (size_t pd: {0, 4})
- for (size_t sd: {2})
- #if CUDNN_MAJOR >= 6
- for (size_t dd: {1, 3, 4})
- #else
- for (size_t dd: {1})
- #endif
- for (size_t cw: {false})
- for (bool xcorr: {false, true}) {
- param::Convolution3D param;
- param.mode = xcorr ? param::Convolution3D::Mode::CROSS_CORRELATION
- : param::Convolution3D::Mode::CONVOLUTION;
- param.stride_d = param.stride_h = param.stride_w = sd;
- param.pad_d = param.pad_h = param.pad_w = pd;
- param.dilate_d = param.dilate_h = param.dilate_w = dd;
- if (cw)
- param.sparse = param::Convolution3D::Sparse::GROUP;
- args.emplace_back(param, TensorShape{n, ic, id, ih, iw},
- !cw ? TensorShape{oc, ic, fd, fh, fw}
- : TensorShape{ic, oc, 1, fd, fh, fw});
- }
- return args;
- #endif
- // clang-format on
- // clang-format off
- for (size_t n: {8})
- for (size_t id: {20})
- for (size_t ih: {id})
- for (size_t iw: {id})
- for (size_t ic: {1})
- for (size_t oc: {ic})
- for (size_t fd: {3})
- for (size_t fh: {fd})
- for (size_t fw: {fh})
- for (size_t pd: {1, 2, 3})
- for (size_t sd: {2})
- for (size_t dd: {1, 2})
- for (size_t cw: {false})
- for (bool xcorr: {false, true}) {
- param::Convolution3D param;
- param.mode = xcorr ? param::Convolution3D::Mode::CROSS_CORRELATION
- : param::Convolution3D::Mode::CONVOLUTION;
- param.stride_d = param.stride_h = param.stride_w = sd;
- param.pad_d = param.pad_h = param.pad_w = pd;
- param.dilate_d = param.dilate_h = param.dilate_w = dd;
- if (cw)
- param.sparse = param::Convolution3D::Sparse::GROUP;
- args.emplace_back(param, TensorShape{n, ic, id, ih, iw},
- !cw ? TensorShape{oc, ic, fd, fh, fw}
- : TensorShape{ic, oc, 1, fd, fh, fw});
- }
- // clang-format on
- return args;
- for (size_t i = range[0].first; i < range[0].second; ++i) {
- param::Convolution3D param;
- param.mode = param::Convolution3D::Mode::CONVOLUTION;
- args.emplace_back(param,
- TensorShape{4, 10, i, i+1, i+2},
- TensorShape{10, 10, 1, 1, 1});
-
- param.mode = param::Convolution3D::Mode::CROSS_CORRELATION;
- args.emplace_back(param,
- TensorShape{4, 10, i, i+1, i+2},
- TensorShape{4, 10, 1, 1, 1});
- }
-
- for (size_t i = 2; i < 6; ++i) {
- param::Convolution3D param;
- param.mode = param::Convolution3D::Mode::CONVOLUTION;
- args.emplace_back(param,
- TensorShape{1, 1, i, i+1, i+2},
- TensorShape{1, 1, 1, 2, 3});
- }
- for (size_t i = 2; i < 6; ++i) {
- param::Convolution3D param;
- param.mode = param::Convolution3D::Mode::CROSS_CORRELATION;
- args.emplace_back(param,
- TensorShape{1, 1, i, i+1, i+2},
- TensorShape{1, 1, 1, 2, 3});
- }
- for (size_t i = 2; i < 5; ++i) {
- param::Convolution3D param;
- param.mode = param::Convolution3D::Mode::CONVOLUTION;
- args.emplace_back(param,
- TensorShape{1, 1, i, i+1, i+2},
- TensorShape{1, 1, 2, 2, 2});
- }
-
- for (size_t i = range[0].first; i < range[0].second; ++i) {
- param::Convolution3D param;
- param.mode = param::Convolution3D::Mode::CONVOLUTION;
- args.emplace_back(param,
- TensorShape{5, 2, i, i+1, i+2},
- TensorShape{3, 2, 3, 4, 5});
-
- param.mode = param::Convolution3D::Mode::CROSS_CORRELATION;
- args.emplace_back(param,
- TensorShape{5, 2, i, i+1, i+2},
- TensorShape{3, 2, 3, 4, 5});
- }
-
- //padding case
- for (size_t i = range[0].first; i < range[0].second; ++i) {
- param::Convolution3D param;
- param.pad_d = 1;
- param.pad_h = 2;
- param.pad_w = 3;
-
- param.mode = param::Convolution3D::Mode::CONVOLUTION;
- args.emplace_back(param,
- TensorShape{5, 2, i, i+1, i+2},
- TensorShape{3, 2, 3, 4, 5});
- param.mode = param::Convolution3D::Mode::CROSS_CORRELATION;
- args.emplace_back(param,
- TensorShape{5, 2, i, i+1, i+2},
- TensorShape{3, 2, 3, 4, 5});
- }
- // large channel
- for (size_t i = range[0].first; i < range[0].second; ++i) {
- param::Convolution3D param;
-
- param.mode = param::Convolution3D::Mode::CONVOLUTION;
- args.emplace_back(param,
- TensorShape{2, 20, i, i+1, i+2},
- TensorShape{30, 20, 3, 4, 5});
- param.mode = param::Convolution3D::Mode::CROSS_CORRELATION;
- args.emplace_back(param,
- TensorShape{2, 20, i, i+1, i+2},
- TensorShape{30, 20, 3, 4, 5});
- }
-
- for (size_t i = range[0].first; i < range[0].second; ++i) {
- param::Convolution3D param;
- param.pad_d = 1;
- param.pad_h = 2;
- param.pad_w = 3;
-
- param.mode = param::Convolution3D::Mode::CONVOLUTION;
- args.emplace_back(param,
- TensorShape{2, 20, i, i+1, i+2},
- TensorShape{30, 20, 3, 4, 5});
- param.mode = param::Convolution3D::Mode::CROSS_CORRELATION;
- args.emplace_back(param,
- TensorShape{2, 20, i, i+1, i+2},
- TensorShape{30, 20, 3, 4, 5});
- }
-
- // 1x1x1
- for (size_t i = range[0].first; i < range[0].second; ++i) {
- param::Convolution3D param;
-
- param.mode = param::Convolution3D::Mode::CONVOLUTION;
- args.emplace_back(param,
- TensorShape{2, 20, i, i+1, i+2},
- TensorShape{30, 20, 1, 1, 1});
- param.mode = param::Convolution3D::Mode::CROSS_CORRELATION;
- args.emplace_back(param,
- TensorShape{2, 20, i, i+1, i+2},
- TensorShape{30, 20, 1, 1, 1});
- }
-
- // large filter
- for (size_t i = range[0].first; i < range[0].second; ++i) {
- param::Convolution3D param;
-
- param.mode = param::Convolution3D::Mode::CONVOLUTION;
- args.emplace_back(param,
- TensorShape{2, 2, i, i+1, i+2},
- TensorShape{3, 2, 7, 8, 9});
- param.mode = param::Convolution3D::Mode::CROSS_CORRELATION;
- args.emplace_back(param,
- TensorShape{2, 2, i, i+1, i+2},
- TensorShape{3, 2, 7, 8, 9});
- }
-
- // exhaustive search
- // clang-format off
- for (size_t n: {1, 2})
- for (size_t id: {7, 8})
- for (size_t ih: {id+1})
- for (size_t iw: {ih+1})
- for (size_t ic: {3})
- for (size_t oc: {4})
- for (size_t fd: {2, 4})
- for (size_t fh: {fd+1})
- for (size_t fw: {fh+1})
- for (size_t ph: {0, 1})
- for (size_t sh: {1, 2})
- for (bool xcorr: {false, true})
- {
- param::Convolution3D param;
- param.mode = xcorr ? param::Convolution3D::Mode::CROSS_CORRELATION
- : param::Convolution3D::Mode::CONVOLUTION;
- param.stride_d = param.stride_h = param.stride_w = sh;
- param.pad_d = param.pad_h = param.pad_w = ph;
- args.emplace_back(param, TensorShape{n, ic, id, ih, iw},
- TensorShape{oc, ic, fd, fh, fw});
- }
- // clang-format on
-
- // 4x4x4
- for (size_t oh = 1; oh < 10; ++oh) {
- param::Convolution3D param;
- param.mode = param::Convolution3D::Mode::CROSS_CORRELATION;
- args.emplace_back(param,
- TensorShape{4, 3, oh+3, oh+4, oh+5},
- TensorShape{2, 3, 4, 4, 4});
- }
- // large channels
- // clang-format off
- for (size_t n: {2})
- for (size_t id: {8})
- for (size_t ih: {id+1})
- for (size_t iw: {ih+1})
- for (size_t ic: {16})
- for (size_t oc: {16})
- for (size_t fd: {3, 6})
- for (size_t fh: {fd+1})
- for (size_t fw: {fh+1})
- for (size_t ph: {0, 1})
- for (size_t sh: {1, 2})
- for (bool xcorr: {false, true})
- {
- param::Convolution3D param;
- param.mode = xcorr ? param::Convolution3D::Mode::CROSS_CORRELATION
- : param::Convolution3D::Mode::CONVOLUTION;
- param.stride_d = param.stride_h = param.stride_w = sh;
- param.pad_d = param.pad_h = param.pad_w = ph;
- args.emplace_back(param, TensorShape{n, ic, id, ih, iw},
- TensorShape{oc, ic, fd, fh, fw});
- }
- // clang-format on
- #if 0
- // x86 direct case 2
- for (size_t stride: {1, 2})
- for (size_t ker_size: {3, 5, 7})
- {
- param::Convolution3D param;
- param.mode = param::Convolution3D::Mode::CROSS_CORRELATION;
- param.stride_d = param.stride_h = param.stride_w = stride;
- param.pad_d = param.pad_h = param.pad_w = ker_size/2;
- args.emplace_back(param,
- TensorShape{2, 2, 20, 19, 18},
- TensorShape{3, 2, ker_size, ker_size, ker_size});
- args.emplace_back(param,
- TensorShape{2, 2, 20, 19, 18},
- TensorShape{1, 2, ker_size, ker_size, ker_size});
- }
-
- for (size_t sd: {1, 2})
- for (size_t sh: {1, 2})
- for (size_t sw: {1, 2})
- for (size_t pd: {0, 1, 2})
- for (size_t ph: {0, 1, 2})
- for (size_t pw: {0, 1, 2})
- for (size_t ker_size: {3, 4, 5, 7})
- for (size_t xcorr : {false, true})
- {
- param::Convolution3D param;
- param.mode = xcorr ?
- param::Convolution3D::Mode::CROSS_CORRELATION :
- param::Convolution3D::Mode::CONVOLUTION;
- param.stride_d = sd;
- param.stride_h = sh;
- param.stride_w = sw;
- param.pad_d = pd;
- param.pad_h = ph;
- param.pad_w = pw;
- args.emplace_back(param,
- TensorShape{2, 2, 10, 15, 20},
- TensorShape{3, 2, ker_size, ker_size, ker_size});
- args.emplace_back(param,
- TensorShape{2, 2, 10, 15, 20},
- TensorShape{1, 2, ker_size, ker_size, ker_size});
- }
- // fallback non-templated impl
- for (size_t sd: {1, 2})
- for (size_t sh: {1, 2})
- for (size_t sw: {1, 2})
- for (size_t pd: {0, 1, 2})
- for (size_t ph: {0, 1, 2})
- for (size_t pw: {0, 1, 2})
- for (size_t ker_size: {3, 4, 5})
- for (size_t xcorr : {false, true})
- {
- param::Convolution3D param;
- param.mode = xcorr ?
- param::Convolution3D::Mode::CROSS_CORRELATION :
- param::Convolution3D::Mode::CONVOLUTION;
- param.stride_d = sd;
- param.stride_h = sh;
- param.stride_w = sw;
- param.pad_d = pd;
- param.pad_h = ph;
- param.pad_w = pw;
- args.emplace_back(param,
- TensorShape{2, 2, 5, 15, 20}, TensorShape{3, 2, ker_size, ker_size+1, ker_size+2});
- args.emplace_back(param,
- TensorShape{2, 2, 5, 15, 20},
- TensorShape{1, 2, ker_size, ker_size+1, ker_size+2});
- }
-
- // x86 winograd algorithm
- for (size_t ic_size: {8, 16})
- {
- param::Convolution3D param;
- param.mode = param::Convolution3D::Mode::CROSS_CORRELATION;
- param.stride_d = param.stride_h = param.stride_w = 1;
- param.pad_d = param.pad_h = param.pad_w = 0;
- args.emplace_back(param,
- TensorShape{2, ic_size, 20, 18, 19},
- TensorShape{8, ic_size, 3, 3, 3});
- }
- #endif
- return args;
- }
-
- std::vector<TestArg> convolution3d::get_chanwise_args() {
- std::vector<TestArg> args;
- // clang-format off
- for (size_t n : {4})
- for (size_t id : {35})
- for (size_t ih : {id + 1})
- for (size_t iw : {ih + 1})
- for (size_t c : {4, 8, 16})
- for (size_t fd : {3, 4, 7})
- for (size_t fh : {fd + 1})
- for (size_t fw : {fh + 1})
- for (size_t ph : {0, 1})
- for (size_t sh : {1, 2})
- for (size_t dh : {1}) {
- param::Convolution3D param;
- param.sparse = param::Convolution3D::Sparse::GROUP;
- param.stride_d = param.stride_h = param.stride_w = sh;
- param.pad_d = param.pad_h = param.pad_w = ph;
- param.dilate_d = param.dilate_h = param.dilate_w = dh;
- args.emplace_back(param, TensorShape{n, c, id, ih, iw},
- TensorShape{c, 1, 1, fd, fh, fw});
- }
- // clang-format on
- return args;
- }
-
- std::vector<TestArg> convolution3d::get_dilated_args() {
- std::vector<TestArg> args;
- param::Convolution3D param;
- {
- param.pad_d = param.pad_h = param.pad_w = 2;
- param.dilate_d = param.dilate_h = param.dilate_w = 3;
- size_t n = 1, ic = 5, id = 24, ih = 24, iw = 24,
- fd = 3, fh = 3, fw = 3,
- oc = 6;
- args.emplace_back(param,
- TensorShape{n, ic, id, ih, iw},
- TensorShape{oc, ic, fd, fh, fw});
- }
- // exhaustive search
- // clang-format off
- for (size_t n : {2})
- for (size_t id : {32})
- for (size_t ih : {id + 1})
- for (size_t iw : {ih + 1})
- for (size_t ic : {3})
- for (size_t oc : {4})
- for (size_t fd : {2, 3, 4})
- for (size_t fh : {fd + 1})
- for (size_t fw : {fh + 1})
- for (size_t ph : {0, 1})
- for (size_t sh : {2, 3})
- for (size_t dh : {2, 3, 4}) {
- param::Convolution3D param;
- param.stride_d = param.stride_h = param.stride_w = sh;
- param.pad_d = param.pad_h = param.pad_w = ph;
- param.dilate_d = param.dilate_h = param.dilate_w = dh;
- args.emplace_back(param, TensorShape{n, ic, id, ih, iw},
- TensorShape{oc, ic, fd, fh, fw});
- }
- // clang-format on
- return args;
- }
- // vim: syntax=cpp.doxygen
|