|
- /**
- * \file dnn/test/common/warp_perspective.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
- * implied.
- */
-
- #include "test/common/warp_perspective.h"
- #include "test/common/benchmarker.h"
- #include "test/common/checker.h"
-
- using namespace megdnn;
- using namespace test;
- using namespace warp_perspective;
-
- void WarpPerspectiveMatIdxProxy::deduce_layout(WarpPerspective*,
- TensorLayoutArray&) {}
- void WarpPerspectiveMatIdxProxy::deduce_layout(WarpPerspectiveBackwardData*,
- TensorLayoutArray&) {}
- void WarpPerspectiveMatIdxProxy::deduce_layout(WarpPerspectiveBackwardMat*,
- TensorLayoutArray&) {}
-
- void WarpPerspectiveMatIdxProxy::exec(WarpPerspective* opr,
- const TensorNDArray& tensors) {
- if (!W.valid()) {
- W = WorkspaceWrapper(opr->handle(), 0);
- }
- megdnn_assert(tensors.size() == 4);
- W.update(opr->get_workspace_in_bytes(tensors[0].layout, tensors[1].layout,
- tensors[2].layout, tensors[3].layout));
- opr->exec(tensors[0], tensors[1], tensors[2], tensors[3], W.workspace());
- }
-
- void WarpPerspectiveMatIdxProxy::exec(WarpPerspectiveBackwardData* opr,
- const TensorNDArray& tensors) {
- if (!W.valid()) {
- W = WorkspaceWrapper(opr->handle(), 0);
- }
- megdnn_assert(tensors.size() == 4);
- W.update(opr->get_workspace_in_bytes(tensors[0].layout, tensors[1].layout,
- tensors[2].layout, tensors[3].layout));
- opr->exec(tensors[0], tensors[1], tensors[2], tensors[3], W.workspace());
- }
-
- void WarpPerspectiveMatIdxProxy::exec(WarpPerspectiveBackwardMat* opr,
- const TensorNDArray& tensors) {
- if (!W.valid()) {
- W = WorkspaceWrapper(opr->handle(), 0);
- }
- megdnn_assert(tensors.size() == 5);
- W.update(opr->get_workspace_in_bytes(tensors[0].layout, tensors[1].layout,
- tensors[2].layout, tensors[3].layout,
- tensors[4].layout));
- opr->exec(tensors[0], tensors[1], tensors[2], tensors[3], tensors[4],
- W.workspace());
- }
-
- std::vector<TestArg> warp_perspective::get_cv_args() {
- std::vector<TestArg> args;
-
- // in warp_perspective_cv INTER_AREA == INTER_LINEAR
- using BorderMode = param::WarpPerspective::BorderMode;
- using InterpolationMode = param::WarpPerspective::InterpolationMode;
- param::WarpPerspective cur_param;
-
- for (size_t i = 4; i < 129; i *= 4) {
- for (size_t ic : {1, 2, 3}) {
- for (BorderMode bmode : {
- BorderMode::REPLICATE,
- BorderMode::REFLECT,
- BorderMode::REFLECT_101,
- BorderMode::WRAP,
- BorderMode::CONSTANT,
- }) {
- for (InterpolationMode imode :
- {InterpolationMode::NEAREST, InterpolationMode::LINEAR,
- InterpolationMode::CUBIC, InterpolationMode::LANCZOS4}) {
- cur_param.bmode = bmode;
- cur_param.format = param::WarpPerspective::Format::NHWC;
-
- cur_param.imode = imode;
- args.emplace_back(cur_param, TensorShape{1, i, i, ic},
- TensorShape{1, 3, 3}, TensorShape{1},
- TensorShape{1, i, i, ic});
- args.emplace_back(cur_param, TensorShape{1, i, i * 2, ic},
- TensorShape{1, 3, 3}, TensorShape{1},
- TensorShape{1, i, i * 2, ic});
- args.emplace_back(cur_param, TensorShape{1, i * 3, i, ic},
- TensorShape{1, 3, 3}, TensorShape{1},
- TensorShape{1, i * 3, i, ic});
-
- cur_param.border_val = 0.78f;
- args.emplace_back(cur_param, TensorShape{1, i, i, ic},
- TensorShape{1, 3, 3}, TensorShape{1},
- TensorShape{1, 8, 8, ic});
- args.emplace_back(cur_param, TensorShape{1, i, i * 2, ic},
- TensorShape{1, 3, 3}, TensorShape{1},
- TensorShape{1, 8, 8, ic});
- args.emplace_back(cur_param, TensorShape{1, i * 3, i, ic},
- TensorShape{1, 3, 3}, TensorShape{1},
- TensorShape{1, 8, 8, ic});
- }
- }
- }
- }
- return args;
- }
-
- void warp_perspective::run_mat_idx_test(Handle* handle) {
- constexpr int N_SRC = 5;
- Checker<WarpPerspectiveForward, WarpPerspectiveMatIdxProxy> checker(handle);
- WarpPerspectiveMatRNG mat_rng;
- checker.set_rng(1, &mat_rng);
-
- UniformIntRNG mat_idx_rng{0, N_SRC - 1};
- checker.set_dtype(2, dtype::Int32());
- checker.set_rng(2, &mat_idx_rng);
-
- WarpPerspective::Param param;
- param.bmode = WarpPerspective::Param::BorderMode::REFLECT;
- param.imode = param::WarpPerspective::InterpolationMode::LINEAR;
- checker.set_param(param);
- checker.execs({{N_SRC, 3, 10, 11}, {2, 3, 3}, {2}, {2, 3, 11, 12}});
- checker.execs({{N_SRC, 14, 17, 13}, {123, 3, 3}, {123}, {123, 14, 16, 15}});
-
- // test NHWC
- param.format = WarpPerspective::Param::Format::NHWC;
- checker.set_param(param)
- .set_rng(2, &mat_idx_rng)
- .set_epsilon(1e-1)
- .set_dtype(2, dtype::Int32());
- checker.execs({{N_SRC, 10, 11, 3}, {2, 3, 3}, {2}, {2, 11, 12, 3}});
- }
-
- void warp_perspective::run_int8_test(Handle* handle) {
- using Param = WarpPerspective::Param;
- Checker<WarpPerspectiveForward> checker(handle);
- UniformIntRNG input_rng{-128, 127};
- WarpPerspectiveMatRNG mat_rng;
- class ResizeBy2xMatRNG : public RNG {
- void gen(const TensorND& tensor_) override {
- float* ptr = tensor_.ptr<float>();
- auto N = tensor_.layout.shape[0];
- megdnn_assert(tensor_.layout.is_contiguous() &&
- tensor_.layout.ndim == 3 && tensor_.layout[1] == 3 &&
- tensor_.layout[2] == 3);
- for (size_t n = 0; n < N; ++n) {
- // | 1 0 0 |
- // mat = | 0 1 0 |
- // | 0 0 2 |
- // resize_2x
- ptr[0] = ptr[4] = 1;
- ptr[8] = 2;
- ptr[1] = ptr[2] = ptr[3] = ptr[5] = ptr[6] = ptr[7] = 0;
- ptr += 9;
- }
- }
- } resize_2x_mat_rng;
- if (handle->type() == Handle::HandleType::CUDA) {
- // As currently the computation is performed in floating points instead
- // of full int, it could be slightly different on GPU.
- checker.set_epsilon(1.1).set_max_avg_error(7e-5);
- }
- checker.set_rng(0, &input_rng)
- .set_rng(1, &mat_rng)
- .set_dtype(0, dtype::Int8())
- .set_dtype(1, dtype::Float32())
- .set_dtype(2, dtype::Int8())
- .set_param({Param::InterpolationMode::LINEAR,
- Param::BorderMode::CONSTANT, Param::Format::NCHW, 0.f});
- checker.execs({{99, 48, 17, 17}, {99, 3, 3}, {99, 48, 22, 22}})
- .execs({{12, 3, 224, 224}, {12, 3, 3}, {12, 3, 256, 256}});
-
- checker.set_rng(1, &resize_2x_mat_rng);
- checker.execs({{98, 48, 17, 17}, {98, 3, 3}, {98, 48, 34, 34}})
- .execs({{13, 3, 224, 224}, {13, 3, 3}, {13, 3, 448, 448}});
- }
-
- void warp_perspective::run_quint8_test(Handle* handle) {
- using Param = WarpPerspective::Param;
- Checker<WarpPerspectiveForward> checker(handle);
- UniformIntRNG input_rng{0, 255};
- WarpPerspectiveMatRNG mat_rng;
- class ResizeBy2xMatRNG : public RNG {
- void gen(const TensorND& tensor_) override {
- float* ptr = tensor_.ptr<float>();
- auto N = tensor_.layout.shape[0];
- megdnn_assert(tensor_.layout.is_contiguous() &&
- tensor_.layout.ndim == 3 && tensor_.layout[1] == 3 &&
- tensor_.layout[2] == 3);
- for (size_t n = 0; n < N; ++n) {
- // | 1 0 0 |
- // mat = | 0 1 0 |
- // | 0 0 2 |
- // resize_2x
- ptr[0] = ptr[4] = 1;
- ptr[8] = 2;
- ptr[1] = ptr[2] = ptr[3] = ptr[5] = ptr[6] = ptr[7] = 0;
- ptr += 9;
- }
- }
- } resize_2x_mat_rng;
- if (handle->type() == Handle::HandleType::CUDA) {
- // As currently the computation is performed in floating points instead
- // of full int, it could be slightly different on GPU.
- checker.set_epsilon(1.1).set_max_avg_error(7e-5);
- }
- checker.set_rng(0, &input_rng)
- .set_rng(1, &mat_rng)
- .set_dtype(0,
- dtype::Quantized8Asymm(0.6f, static_cast<uint8_t>(127)))
- .set_dtype(1, dtype::Float32())
- .set_dtype(2,
- dtype::Quantized8Asymm(0.6f, static_cast<uint8_t>(127)))
- .set_param({Param::InterpolationMode::LINEAR,
- Param::BorderMode::CONSTANT, Param::Format::NCHW, 0.f});
- checker.execs({{99, 48, 17, 17}, {99, 3, 3}, {99, 48, 22, 22}})
- .execs({{12, 3, 224, 224}, {12, 3, 3}, {12, 3, 256, 256}});
-
- checker.set_rng(1, &resize_2x_mat_rng);
- checker.execs({{98, 48, 17, 17}, {98, 3, 3}, {98, 48, 34, 34}})
- .execs({{13, 3, 224, 224}, {13, 3, 3}, {13, 3, 448, 448}});
- }
-
- // vim: syntax=cpp.doxygen
|