|
- import numpy as np
-
- import megengine as mge
- import megengine.optimizer as optimizer
- from megengine import Parameter, tensor
- from megengine.core.tensor.raw_tensor import RawTensor
- from megengine.module import Module
-
-
- class Simple(Module):
- def __init__(self):
- super().__init__()
- self.a = Parameter(1.23, dtype=np.float32)
-
- def forward(self, x):
- x = x * self.a
- return x
-
-
- def test_save_load():
- net = Simple()
-
- optim = optimizer.SGD(net.parameters(), lr=1.0, momentum=0.9)
- optim.zero_grad()
-
- data = tensor([2.34])
-
- with optim.record():
- loss = net(data)
- optim.backward(loss)
-
- optim.step()
-
- model_name = "simple.pkl"
- print("save to {}".format(model_name))
-
- mge.save(
- {
- "name": "simple",
- "state_dict": net.state_dict(),
- "opt_state": optim.state_dict(),
- },
- model_name,
- )
-
- # Load param to cpu
- checkpoint = mge.load(model_name, map_location="cpu0")
- device_save = mge.get_default_device()
- mge.set_default_device("cpu0")
- net = Simple()
- net.load_state_dict(checkpoint["state_dict"])
- optim = optimizer.SGD(net.parameters(), lr=1.0, momentum=0.9)
- optim.load_state_dict(checkpoint["opt_state"])
- print("load done")
-
- with optim.record():
- loss = net([1.23])
- optim.backward(loss)
-
- optim.step()
- # Restore device
- mge.set_default_device(device_save)
|