|
- # -*- coding: utf-8 -*-
- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- #
- # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-
- import builtins
- import collections
- from typing import Callable, List
-
- from ...core._imperative_rt import OpDef
- from ...core._imperative_rt.core2 import Tensor as RawTensor
- from ...core._imperative_rt.core2 import apply, set_module_tracing, unset_module_tracing
- from ...core.ops.special import Const
- from ...module import Module
- from ...tensor import Tensor
- from .module_tracer import active_module_tracer
- from .node import ModuleNode, Node, NodeMixin, TensorNode
- from .pytree import TreeDef
-
-
- class Expr:
- """
- ``Expr`` represents the operations(i.e. CallMethod, CallFunction, Apply, GetAttr, Input, Constant) on ``Node``.
- """
-
- inputs = None # type: List[Node]
- outputs = None # type: List[Node]
- const_val = None # type: List[Any]
- arg_def = None # type: TreeDef
-
- def add_inputs(self, vals):
- if not isinstance(vals, collections.abc.Sequence):
- vals = (vals,)
- for val in vals:
- node = NodeMixin.get(val, None)
- if isinstance(node, (TensorNode, ModuleNode)):
- if node not in self.inputs:
- self.inputs.append(node)
- else:
- assert node is None
- assert type(val) in builtins.__dict__.values()
- idx = len(self.inputs) + len(self.const_val)
- self.const_val.append((idx, val))
-
- def add_outputs(self, outputs):
- self.outputs = []
- if not isinstance(outputs, collections.Sequence):
- outputs = (outputs,)
-
- for i in outputs:
- assert isinstance(i, RawTensor)
- self.outputs.append(NodeMixin.get_wrapped_type(i)(self))
-
- for i, node in zip(outputs, self.outputs,):
- NodeMixin.wrap_safe(i, node)
-
- def unflatten_args(self, inputs):
- if self.arg_def is not None:
- inputs = list(inputs)
- for idx, val in self.const_val:
- inputs.insert(idx, val)
- args, kwargs = self.arg_def.unflatten(inputs)
- return args, kwargs
- else:
- return inputs, {}
-
- @property
- def kwargs(self):
- _, kwargs = self.unflatten_args(self.inputs)
- return kwargs
-
- @property
- def args(self):
- args, _ = self.unflatten_args(self.inputs)
- return args
-
-
- # expr: None (i.e. fake expression which is used to mark input)
- class Input(Expr):
- name = None
-
- def __init__(self, name=None, type=None):
- self.inputs = []
- node_cls = type if type else Node
- self.outputs = [
- node_cls(self, name=name),
- ]
- self.name = name
-
- @classmethod
- def make(cls, *args, **kwargs):
- expr = cls(*args, **kwargs)
- active_module_tracer().current_scope().add_input(expr.outputs[0])
- return expr.outputs[0]
-
- def __repr__(self):
- return "{} = Input({})".format(self.outputs[0], self.name)
-
-
- # expr: outputs = getattr(inputs[0], self.name)
- class GetAttr(Expr):
- name = None
-
- def __init__(self, module, name, type=None):
- assert isinstance(module, ModuleNode)
- self.inputs = [
- module,
- ]
- self.name = name
- node_cls = type if type else Node
- self.outputs = [
- node_cls(self),
- ]
-
- @classmethod
- def make(cls, *args, **kwargs):
- expr = cls(*args, **kwargs)
- active_module_tracer().current_scope().insert(expr)
- expr.outputs[0]._name = expr.name
- return expr.outputs[0]
-
- def interpret(self, *inputs):
- return (getattr(inputs[0], self.name),)
-
- def __repr__(self):
- return '{} = GetAttr({}, "{}")'.format(
- self.outputs[0], self.inputs[0], self.name
- )
-
-
- # expr: outputs = inputs[0].__call__(*inputs[1:])
- class CallMethod(Expr):
- def __init__(self, module, method="__call__"):
- assert isinstance(module, (TensorNode, ModuleNode))
- self.inputs = [
- module,
- ]
- self.const_val = []
- self.method = method
-
- @classmethod
- def make(cls, *args, **kwargs):
- expr = cls(*args, **kwargs)
- active_module_tracer().current_scope().insert(expr)
- return expr
-
- def interpret(self, *inputs):
- args, kwargs = self.unflatten_args(inputs)
- obj = args[0]
- args = args[1:]
- outputs = getattr(obj, self.method)(*args, **kwargs)
- if isinstance(outputs, RawTensor):
- outputs = (outputs,)
- return outputs
-
- def __repr__(self):
- args = ", ".join(str(i) for i in self.args[1:])
- kwargs = ", ".join("{}={}".format(k, v) for k, v in self.kwargs.items())
- return "{} = {}.{}({})".format(
- ", ".join(str(i) for i in self.outputs),
- self.inputs[0],
- self.method,
- ", ".join([args, kwargs]),
- )
-
-
- # expr: outputs = apply(self.opdef, *inputs)
- class Apply(Expr):
- opdef = None
-
- def __init__(self, opdef):
- assert isinstance(opdef, OpDef)
- self.opdef = opdef
- self.inputs = []
-
- @classmethod
- def make(cls, *args, **kwargs):
- expr = cls(*args, **kwargs)
- active_module_tracer().current_scope().insert(expr)
- return expr
-
- def interpret(self, *inputs):
- return apply(self.opdef, *inputs)
-
- def __repr__(self):
- return "{} = {}({})".format(
- ", ".join(str(i) for i in self.outputs),
- self.opdef,
- ", ".join(str(i) for i in self.inputs),
- )
-
- @classmethod
- def apply_module_trace_hook(cls, opdef, *inputs):
- for i in inputs:
- node = NodeMixin.get(i, None)
- if node is None: # capture as constant
- NodeMixin.wrap_safe(i, Constant.make(i))
- apply_node = cls.make(opdef)
- for i in inputs:
- assert isinstance(i, RawTensor)
- apply_node.inputs.append(NodeMixin.get(i))
-
- unset_module_tracing()
- outputs = apply(opdef, *inputs)
- set_module_tracing()
-
- apply_node.add_outputs(outputs)
- for n, v in zip(apply_node.outputs, outputs):
- NodeMixin.wrap_safe(v, n)
- return list(outputs)
-
-
- class CallFunction(Expr):
- def __init__(self, func):
- assert isinstance(func, Callable)
- self.func = func
- self.const_val = []
- self.inputs = []
-
- @classmethod
- def make(cls, *args, **kwargs):
- expr = cls(*args, **kwargs)
- active_module_tracer().current_scope().insert(expr)
- return expr
-
- def interpret(self, *inputs):
- args, kwargs = self.unflatten_args(inputs)
- outputs = self.func(*args, **kwargs)
- outputs = (
- outputs if isinstance(outputs, collections.abc.Sequence) else (outputs,)
- )
- return outputs
-
- def __repr__(self):
- args = ", ".join(str(i) for i in self.args)
- kwargs = ", ".join("{}={}".format(k, v) for k, v in self.kwargs.items())
- return "{} = {}({})".format(
- ", ".join(str(i) for i in self.outputs),
- self.func.__module__ + "." + self.func.__name__,
- ", ".join([args, kwargs]),
- )
-
-
- # expr outputs = self.value
- class Constant(Expr):
- value = None
- # TODO: constant cache to reduce the size of dumped model
- _constant_cache = {}
-
- def __init__(self, c):
- # TODO: type check, since not all types should be captured as constant
- self.value = c
- self.inputs = []
- node_cls = NodeMixin.get_wrapped_type(c)
- self.outputs = [
- node_cls(self),
- ]
-
- @classmethod
- def make(cls, *args, **kwargs):
- expr = cls(*args, **kwargs)
- active_module_tracer().current_scope().insert(expr)
- return expr.outputs[0]
-
- def interpret(self, *inputs):
- if isinstance(self.value, RawTensor):
- return Const(self.value.numpy())()
- return (self.value,)
-
- def __repr__(self):
- return "{} = Constant({})".format(self.outputs[0], self.value)
-
- def __getstate__(self):
- state = self.__dict__.copy()
- if isinstance(self.value, RawTensor):
- state["value"] = Tensor(self.value)
- return state
|