|
- /***************************************************************************************************
- * Copyright (c) 2017-2020, NVIDIA CORPORATION. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- *modification, are permitted provided that the following conditions are met:
- * * Redistributions of source code must retain the above copyright notice,
- *this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above copyright
- *notice, this list of conditions and the following disclaimer in the
- *documentation and/or other materials provided with the distribution.
- * * Neither the name of the NVIDIA CORPORATION nor the names of its
- *contributors may be used to endorse or promote products derived from this
- *software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- *AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- *IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- *DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY DIRECT,
- *INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
- * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- *DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
- *OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TOR (INCLUDING
- *NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
- *EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- **************************************************************************************************/
- /**
- * \file dnn/src/cuda/cutlass/convolution_operation.h
- *
- * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
- * implied.
- */
-
- #pragma once
-
- #include "cutlass/convolution/device/convolution.h"
- #include "src/cuda/cutlass/library_internal.h"
-
- ///////////////////////////////////////////////////////////////////////////////////////////////////
-
- namespace cutlass {
- namespace library {
-
- ///////////////////////////////////////////////////////////////////////////////////////////////////
-
- template <typename Operator_>
- class ConvolutionOperationBase : public Operation {
- public:
- using Operator = Operator_;
- using ElementSrc = typename Operator::ElementSrc;
- using LayoutSrc = typename Operator::LayoutSrc;
- using ElementFilter = typename Operator::ElementFilter;
- using LayoutFilter = typename Operator::LayoutFilter;
- using ElementDst = typename Operator::ElementDst;
- using LayoutDst = typename Operator::LayoutDst;
- using ElementBias = typename Operator::ElementBias;
- using LayoutBias = typename Operator::LayoutBias;
- using ElementAccumulator = typename Operator::ElementAccumulator;
-
- ConvolutionOperationBase(char const* name = "unknown_convolution") {
- m_description.name = name;
- m_description.provider = Provider::kCUTLASS;
- m_description.kind = OperationKind::kConvolution;
- m_description.conv_op = Operator::kConvolutionalOperator;
-
- m_description.tile_description.threadblock_shape = make_Coord(
- Operator::ThreadblockShape::kM, Operator::ThreadblockShape::kN,
- Operator::ThreadblockShape::kK);
-
- m_description.tile_description.threadblock_stages = Operator::kStages;
-
- m_description.tile_description.warp_count = make_Coord(
- Operator::ConvolutionKernel::WarpCount::kM,
- Operator::ConvolutionKernel::WarpCount::kN,
- Operator::ConvolutionKernel::WarpCount::kK);
-
- m_description.tile_description.math_instruction.instruction_shape = make_Coord(
- Operator::InstructionShape::kM, Operator::InstructionShape::kN,
- Operator::InstructionShape::kK);
-
- m_description.tile_description.math_instruction.element_accumulator =
- NumericTypeMap<ElementAccumulator>::kId;
-
- m_description.tile_description.math_instruction.opcode_class =
- OpcodeClassMap<typename Operator::OperatorClass>::kId;
-
- m_description.tile_description.math_instruction.math_operation =
- MathOperationMap<typename Operator::Operator>::kId;
-
- m_description.tile_description.minimum_compute_capability =
- ArchMap<typename Operator::ArchTag,
- typename Operator::OperatorClass>::kMin;
-
- m_description.tile_description.maximum_compute_capability =
- ArchMap<typename Operator::ArchTag,
- typename Operator::OperatorClass>::kMax;
-
- m_description.src =
- make_TensorDescription<ElementSrc, LayoutSrc>(Operator::kAlignmentSrc);
- m_description.filter = make_TensorDescription<ElementFilter, LayoutFilter>(
- Operator::kAlignmentFilter);
- m_description.dst =
- make_TensorDescription<ElementDst, LayoutDst>(Operator::kAlignmentDst);
- m_description.bias = make_TensorDescription<ElementBias, LayoutBias>(
- Operator::kAlignmentDst);
-
- m_description.convolution_type = Operator::kConvolutionType;
- m_description.arch_tag = ArchTagMap<typename Operator::ArchTag>::kId;
-
- m_description.epilogue_type = Operator::EpilogueOutputOp::kType;
- m_description.epilogue_count = Operator::EpilogueOutputOp::kCount;
-
- m_description.threadblock_swizzle =
- ThreadblockSwizzleMap<typename Operator::ThreadblockSwizzle>::kId;
-
- m_description.special_optimization = Operator::kSpecialOpt;
- m_description.gemm_mode = Operator::kGemmMode;
- m_description.without_shared_load = Operator::kWithoutSharedLoad;
- }
-
- virtual OperationDescription const& description() const { return m_description; }
-
- protected:
- ConvolutionDescription m_description;
- };
-
- ///////////////////////////////////////////////////////////////////////////////////////////////////
-
- namespace detail {
-
- template <typename EpilogueOp, epilogue::EpilogueType type>
- struct init_epilogue_param_;
-
- template <typename EpilogueOp>
- struct init_epilogue_param_<EpilogueOp, epilogue::EpilogueType::kLinearCombination> {
- using ElementCompute = typename EpilogueOp::ElementCompute;
- typename EpilogueOp::Params get(ConvolutionArguments const* conv_args) {
- return {*static_cast<ElementCompute const*>(conv_args->alpha),
- *static_cast<ElementCompute const*>(conv_args->beta)};
- }
- };
-
- template <typename EpilogueOp>
- struct init_epilogue_param_<
- EpilogueOp, epilogue::EpilogueType::kBiasAddLinearCombination> {
- using ElementCompute = typename EpilogueOp::ElementCompute;
- typename EpilogueOp::Params get(ConvolutionArguments const* conv_args) {
- return {*static_cast<ElementCompute const*>(conv_args->alpha),
- *static_cast<ElementCompute const*>(conv_args->beta),
- *static_cast<ElementCompute const*>(conv_args->gamma),
- *static_cast<ElementCompute const*>(conv_args->delta)};
- }
- };
-
- template <typename EpilogueOp>
- struct init_epilogue_param_<
- EpilogueOp, epilogue::EpilogueType::kBiasAddLinearCombinationClamp> {
- using ElementCompute = typename EpilogueOp::ElementCompute;
- typename EpilogueOp::Params get(ConvolutionArguments const* conv_args) {
- return {*static_cast<ElementCompute const*>(conv_args->alpha),
- *static_cast<ElementCompute const*>(conv_args->beta),
- *static_cast<ElementCompute const*>(conv_args->gamma),
- *static_cast<ElementCompute const*>(conv_args->delta)};
- }
- };
-
- template <typename EpilogueOp>
- struct init_epilogue_param_<
- EpilogueOp, epilogue::EpilogueType::kBiasAddLinearCombinationRelu> {
- using ElementCompute = typename EpilogueOp::ElementCompute;
- typename EpilogueOp::Params get(ConvolutionArguments const* conv_args) {
- return {*static_cast<ElementCompute const*>(conv_args->alpha),
- *static_cast<ElementCompute const*>(conv_args->beta),
- *static_cast<ElementCompute const*>(conv_args->gamma),
- *static_cast<ElementCompute const*>(conv_args->threshold),
- *static_cast<ElementCompute const*>(conv_args->delta),
- *static_cast<ElementCompute const*>(conv_args->theta)};
- }
- };
-
- template <typename EpilogueOp>
- struct init_epilogue_param_<
- EpilogueOp, epilogue::EpilogueType::kBiasAddLinearCombinationReluClamp> {
- using ElementCompute = typename EpilogueOp::ElementCompute;
- typename EpilogueOp::Params get(ConvolutionArguments const* conv_args) {
- return {*static_cast<ElementCompute const*>(conv_args->alpha),
- *static_cast<ElementCompute const*>(conv_args->beta),
- *static_cast<ElementCompute const*>(conv_args->gamma),
- *static_cast<ElementCompute const*>(conv_args->threshold),
- *static_cast<ElementCompute const*>(conv_args->delta),
- *static_cast<ElementCompute const*>(conv_args->theta)};
- }
- };
-
- template <typename EpilogueOp>
- struct init_epilogue_param_<
- EpilogueOp, epilogue::EpilogueType::kBiasAddLinearCombinationHSwish> {
- using ElementCompute = typename EpilogueOp::ElementCompute;
- typename EpilogueOp::Params get(ConvolutionArguments const* conv_args) {
- return {*static_cast<ElementCompute const*>(conv_args->alpha),
- *static_cast<ElementCompute const*>(conv_args->beta),
- *static_cast<ElementCompute const*>(conv_args->gamma),
- *static_cast<ElementCompute const*>(conv_args->scale),
- *static_cast<ElementCompute const*>(conv_args->delta),
- *static_cast<ElementCompute const*>(conv_args->theta)};
- }
- };
-
- template <typename EpilogueOp>
- struct init_epilogue_param_<
- EpilogueOp, epilogue::EpilogueType::kBiasAddLinearCombinationHSwishClamp> {
- using ElementCompute = typename EpilogueOp::ElementCompute;
- typename EpilogueOp::Params get(ConvolutionArguments const* conv_args) {
- return {*static_cast<ElementCompute const*>(conv_args->alpha),
- *static_cast<ElementCompute const*>(conv_args->beta),
- *static_cast<ElementCompute const*>(conv_args->gamma),
- *static_cast<ElementCompute const*>(conv_args->scale),
- *static_cast<ElementCompute const*>(conv_args->delta),
- *static_cast<ElementCompute const*>(conv_args->theta)};
- }
- };
-
- } // namespace detail
-
- template <typename EpilogueOp>
- struct init_epilogue_param
- : public detail::init_epilogue_param_<EpilogueOp, EpilogueOp::kType> {};
-
- ///////////////////////////////////////////////////////////////////////////////////////////////////
-
- template <typename Operator_>
- class ConvolutionOperation : public ConvolutionOperationBase<Operator_> {
- public:
- using Operator = Operator_;
- using ElementSrc = typename Operator::ElementSrc;
- using LayoutSrc = typename Operator::LayoutSrc;
- using ElementFilter = typename Operator::ElementFilter;
- using LayoutFilter = typename Operator::LayoutFilter;
- using ElementBias = typename Operator::ElementBias;
- using LayoutBias = typename Operator::LayoutBias;
- using ElementDst = typename Operator::ElementDst;
- using LayoutDst = typename Operator::LayoutDst;
- using ElementAccumulator = typename Operator::ElementAccumulator;
- using ElementCompute = typename Operator::EpilogueOutputOp::ElementCompute;
-
- using OperatorArguments = typename Operator::Arguments;
-
- ConvolutionOperation(char const* name = "unknown_gemm")
- : ConvolutionOperationBase<Operator_>(name) {}
-
- virtual Status run(
- void const* arguments_ptr, void* device_workspace = nullptr,
- cudaStream_t stream = nullptr) const {
- cutlass::conv::Operator conv_op = this->m_description.conv_op;
- ConvolutionArguments const* conv_args =
- reinterpret_cast<ConvolutionArguments const*>(arguments_ptr);
- const auto& ps = conv_args->problem_size;
-
- OperatorArguments args;
- args.problem_size = ps;
- args.ref_src = {
- static_cast<ElementSrc*>(const_cast<void*>(conv_args->src)),
- LayoutSrc::packed(implicit_gemm_tensor_a_extent(conv_op, ps))};
- args.ref_filter = {
- static_cast<ElementFilter*>(const_cast<void*>(conv_args->filter)),
- LayoutFilter::packed(implicit_gemm_tensor_b_extent(conv_op, ps))};
- args.ref_bias = {
- static_cast<ElementBias*>(const_cast<void*>(conv_args->bias)),
- LayoutBias::packed(implicit_gemm_tensor_bias_extent(conv_op, ps))};
- args.ref_z = {
- static_cast<ElementDst*>(const_cast<void*>(conv_args->z)),
- LayoutDst::packed(implicit_gemm_tensor_c_extent(conv_op, ps))};
- args.ref_dst = {
- static_cast<ElementDst*>(conv_args->dst),
- LayoutDst::packed(implicit_gemm_tensor_c_extent(conv_op, ps))};
-
- args.output_op = init_epilogue_param<typename Operator::EpilogueOutputOp>().get(
- conv_args);
-
- if (conv_args->extra_param) {
- args.extra_param = *reinterpret_cast<typename Operator::ExtraParam const*>(
- conv_args->extra_param);
- }
-
- Operator op;
- Status status = op.initialize(args, device_workspace);
-
- if (status != Status::kSuccess) {
- return status;
- }
-
- return op.run(stream);
- }
- };
-
- ///////////////////////////////////////////////////////////////////////////////////////////////////
-
- /// We add a new template class to handle convolution backward filter operation, because
- /// the device-level convolution operator of backward filter is different from the
- /// others (convolution forward and convolution backward data).
- /// But the description object is reused in this wrapper of convolution backward filter.
- /// The reason is that we do not want to introduce an another unnecessary structure.
- /// TODO: Maybe the device-level operator in cutlass for convoluton forward, backward
- /// data and backward filter should be combined.
- template <typename Operator_>
- class ConvolutionBackwardFilterOperationBase : public Operation {
- public:
- using Operator = Operator_;
- using ElementSrc = typename Operator::ElementSrc;
- using LayoutSrc = typename Operator::LayoutSrc;
- using ElementDiff = typename Operator::ElementDiff;
- using LayoutDiff = typename Operator::LayoutDiff;
- using ElementGrad = typename Operator::ElementGrad;
- using LayoutGrad = typename Operator::LayoutGrad;
- using ElementAccumulator = typename Operator::ElementAccumulator;
-
- ConvolutionBackwardFilterOperationBase(char const* name = "unknown_convolution") {
- m_description.name = name;
- m_description.provider = Provider::kCUTLASS;
- m_description.kind = OperationKind::kConvolution;
- m_description.conv_op = Operator::kConvolutionalOperator;
-
- m_description.tile_description.threadblock_shape = make_Coord(
- Operator::ThreadblockShape::kM, Operator::ThreadblockShape::kN,
- Operator::ThreadblockShape::kK);
-
- m_description.tile_description.threadblock_stages = Operator::kStages;
-
- m_description.tile_description.warp_count = make_Coord(
- Operator::ConvolutionKernel::WarpCount::kM,
- Operator::ConvolutionKernel::WarpCount::kN,
- Operator::ConvolutionKernel::WarpCount::kK);
-
- m_description.tile_description.math_instruction.instruction_shape = make_Coord(
- Operator::InstructionShape::kM, Operator::InstructionShape::kN,
- Operator::InstructionShape::kK);
-
- m_description.tile_description.math_instruction.element_accumulator =
- NumericTypeMap<ElementAccumulator>::kId;
-
- m_description.tile_description.math_instruction.opcode_class =
- OpcodeClassMap<typename Operator::OperatorClass>::kId;
-
- m_description.tile_description.math_instruction.math_operation =
- MathOperationMap<typename Operator::Operator>::kId;
-
- m_description.tile_description.minimum_compute_capability =
- ArchMap<typename Operator::ArchTag,
- typename Operator::OperatorClass>::kMin;
-
- m_description.tile_description.maximum_compute_capability =
- ArchMap<typename Operator::ArchTag,
- typename Operator::OperatorClass>::kMax;
-
- /// src in description -> src in C++ template
- m_description.src =
- make_TensorDescription<ElementSrc, LayoutSrc>(Operator::kAlignmentSrc);
- /// filter in description -> diff in C++ template
- m_description.filter = make_TensorDescription<ElementDiff, LayoutDiff>(
- Operator::kAlignmentDiff);
- /// dst in description -> grad in C++ template
- m_description.dst = make_TensorDescription<ElementGrad, LayoutGrad>(
- Operator::kAlignmentGrad);
- /// because bias tensor is not used in ConvolutionBackwardFilter operation, the
- /// following tensor description is a dummy arguments
- m_description.bias = make_TensorDescription<ElementGrad, LayoutGrad>(
- Operator::kAlignmentGrad);
-
- m_description.convolution_type = Operator::kConvolutionType;
- m_description.arch_tag = ArchTagMap<typename Operator::ArchTag>::kId;
-
- m_description.epilogue_type = Operator::EpilogueOutputOp::kType;
- m_description.epilogue_count = Operator::EpilogueOutputOp::kCount;
-
- m_description.threadblock_swizzle =
- ThreadblockSwizzleMap<typename Operator::ThreadblockSwizzle>::kId;
-
- m_description.special_optimization = Operator::kSpecialOpt;
- m_description.gemm_mode = Operator::kGemmMode;
- /// ConvolutionBackwardFilter operation is only used for depthwise convolution,
- /// so the option without_shared_load is always true
- m_description.without_shared_load = true;
- }
-
- virtual OperationDescription const& description() const { return m_description; }
-
- protected:
- ConvolutionDescription m_description;
- };
-
- ///////////////////////////////////////////////////////////////////////////////////////////////////
-
- template <typename Operator_>
- class ConvolutionBackwardFilterOperation
- : public ConvolutionBackwardFilterOperationBase<Operator_> {
- public:
- using Operator = Operator_;
- using ElementSrc = typename Operator::ElementSrc;
- using LayoutSrc = typename Operator::LayoutSrc;
- using ElementDiff = typename Operator::ElementDiff;
- using LayoutDiff = typename Operator::LayoutDiff;
- using ElementGrad = typename Operator::ElementGrad;
- using LayoutGrad = typename Operator::LayoutGrad;
- using ElementAccumulator = typename Operator::ElementAccumulator;
- using ElementCompute = typename Operator::EpilogueOutputOp::ElementCompute;
-
- using OperatorArguments = typename Operator::Arguments;
-
- ConvolutionBackwardFilterOperation(char const* name = "unknown_gemm")
- : ConvolutionBackwardFilterOperationBase<Operator_>(name) {}
-
- virtual Status run(
- void const* arguments_ptr, void* device_workspace = nullptr,
- cudaStream_t stream = nullptr) const {
- cutlass::conv::Operator conv_op = this->m_description.conv_op;
- ConvolutionArguments const* conv_args =
- reinterpret_cast<ConvolutionArguments const*>(arguments_ptr);
- const auto& ps = conv_args->problem_size;
-
- OperatorArguments args;
- args.problem_size = ps;
- /// src in convolution arguments -> ref_src
- args.ref_src = {
- static_cast<ElementSrc*>(const_cast<void*>(conv_args->src)),
- LayoutSrc::packed(implicit_gemm_tensor_b_extent(conv_op, ps))};
- /// filter in convolution arguments -> ref_diff
- args.ref_diff = {
- static_cast<ElementDiff*>(const_cast<void*>(conv_args->filter)),
- LayoutDiff::packed(implicit_gemm_tensor_a_extent(conv_op, ps))};
- /// dst in convolution arguments -> ref_grad
- args.ref_grad = {
- static_cast<ElementGrad*>(conv_args->dst),
- LayoutGrad::packed(implicit_gemm_tensor_c_extent(conv_op, ps))};
-
- args.output_op = init_epilogue_param<typename Operator::EpilogueOutputOp>().get(
- conv_args);
-
- Operator op;
- Status status = op.initialize(args, device_workspace);
-
- if (status != Status::kSuccess) {
- return status;
- }
-
- return op.run(stream);
- }
- };
-
- ///////////////////////////////////////////////////////////////////////////////////////////////////
-
- } // namespace library
- } // namespace cutlass
-
- ///////////////////////////////////////////////////////////////////////////////////////////////////
|