|
- /**
- * \file dnn/src/fallback/conv_bias/im2col/algos.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- */
-
- #include "src/fallback/conv_bias/im2col/strategy_base.h"
- #include "src/fallback/convolution/img2col_helper.h"
-
- namespace megdnn {
-
- template <typename src_ctype, typename bias_ctype, typename dst_ctype,
- typename op_ctype, typename op_dtype,
- megdnn::PostprocessMode postprocess_mode>
- void Strategy<src_ctype, bias_ctype, dst_ctype, op_ctype, op_dtype,
- postprocess_mode, PackMode::ONLY_PACKA>::
- packA_kern(WorkspaceBundle bundle,
- const fallback::ConvBiasImpl::NCBKernParam& param,
- fallback::MatrixMulImpl::KernSizeParam matmulparam,
- fallback::MatrixMulImpl::AlgoBase* matmul_algo,
- const fallback::ConvBiasImpl::NCBKernIndex& ncb_index,
- size_t) {
- bundle.set(param.workspace_ptr);
- fallback::MatrixMulImpl::KernParam matmul_param;
- static_cast<fallback::MatrixMulImpl::KernSizeParam&>(matmul_param) =
- matmulparam;
- size_t OC = param.filter_meta.ocpg;
- size_t oc_tile_size = matmul_param.M;
- size_t group_id = ncb_index.ndrange_id[0];
- size_t output_block_oc_size =
- std::min(oc_tile_size, OC - ncb_index.ndrange_id[1] * oc_tile_size);
- size_t oc_cur_index = ncb_index.ndrange_id[1] * oc_tile_size;
- size_t packA_group_size =
- bundle.get_size(BUNDLE_PACKA_INDEX) / param.filter_meta.group;
- size_t a_panel_offset = ncb_index.ndrange_id[1] *
- matmul_algo->get_bundle(matmul_param).get_size(0);
- int8_t* a_panel = static_cast<int8_t*>(bundle.get(BUNDLE_PACKA_INDEX)) +
- group_id * packA_group_size + a_panel_offset;
- matmul_param.A_ptr =
- const_cast<src_ctype*>(param.filter<src_ctype>(group_id)) +
- oc_cur_index * matmul_param.K;
- matmul_param.M = output_block_oc_size;
- matmul_algo->pack_A(matmul_param, a_panel, 0_z, 0_z);
- }
-
- template <typename src_ctype, typename bias_ctype, typename dst_ctype,
- typename op_ctype, typename op_dtype,
- megdnn::PostprocessMode postprocess_mode>
- void Strategy<src_ctype, bias_ctype, dst_ctype, op_ctype, op_dtype,
- postprocess_mode, PackMode::ONLY_PACKA>::
- exec_matmul(const fallback::ConvBiasImpl::NCBKernParam& param,
- const StrategyParam& sparam, WorkspaceBundle bundle,
- WorkspaceBundle bundle_thread,
- fallback::MatrixMulImpl::KernParam matmul_param,
- fallback::MatrixMulImpl::AlgoBase* matmul_algo,
- const fallback::ConvBiasImpl::NCBKernIndex& ncb_index) {
- size_t packA_group_size =
- bundle.get_size(BUNDLE_PACKA_INDEX) / param.filter_meta.group;
- size_t a_panel_offset = ncb_index.ndrange_id[3] *
- matmul_algo->get_bundle(matmul_param).get_size(0);
- a_panel_offset = sparam.group_id * packA_group_size + a_panel_offset;
-
- void* matmul_dst = get_matmul_dst_ptr(param, bundle_thread, sparam);
-
- src_ctype* a_panel = reinterpret_cast<src_ctype*>(
- reinterpret_cast<uintptr_t>(bundle.get(BUNDLE_PACKA_INDEX)) +
- a_panel_offset);
- src_ctype* b_panel = nullptr;
-
- src_ctype* im2col_dst = static_cast<src_ctype*>(
- bundle_thread.get(THREAD_BUNDLE_IM2COL_INDEX));
-
- matmul_param.M = sparam.output_block_oc_size;
- matmul_param.N = sparam.output_block_size;
- matmul_param.LDB = sparam.output_block_size;
- matmul_param.LDC = sparam.output_block_size;
- matmul_param.B_ptr = im2col_dst;
- matmul_param.C_ptr = matmul_dst;
-
- auto matmul_kern = matmul_algo->get_kern_naked(matmul_param);
- matmul_kern(matmul_param, a_panel, b_panel);
- }
-
- template <typename src_ctype, typename bias_ctype, typename dst_ctype,
- typename op_ctype, typename op_dtype,
- megdnn::PostprocessMode postprocess_mode>
- void Strategy<src_ctype, bias_ctype, dst_ctype, op_ctype, op_dtype,
- postprocess_mode, PackMode::ONLY_PACKA>::
- exec_im2col(WorkspaceBundle bundle, WorkspaceBundle bundle_thread,
- const StrategyParam& sparam,
- const fallback::ConvBiasImpl::NCBKernParam& param,
- fallback::MatrixMulImpl::KernParam matmul_param,
- fallback::MatrixMulImpl::AlgoBase* matmul_algo) {
- MEGDNN_MARK_USED_VAR(matmul_param);
- MEGDNN_MARK_USED_VAR(matmul_algo);
- size_t sh = param.filter_meta.stride[0];
- size_t sw = param.filter_meta.stride[1];
- size_t oc = param.filter_meta.ocpg;
- size_t oh = param.osz[0];
- size_t ow = param.osz[1];
- size_t ic = param.filter_meta.icpg;
- size_t ih = param.isz[0] + param.filter_meta.padding[0] * 2;
- size_t iw = param.isz[1] + param.filter_meta.padding[1] * 2;
- size_t fh = param.filter_meta.spatial[0];
- size_t fw = param.filter_meta.spatial[1];
- size_t is_xcorr = !param.filter_meta.should_flip;
-
- size_t input_offset =
- ih * iw * ic *
- (sparam.group_id + param.filter_meta.group * sparam.batch_id) *
- sizeof(src_ctype);
-
- src_ctype* src2 = reinterpret_cast<src_ctype*>(
- reinterpret_cast<uintptr_t>(bundle.get(BUNDLE_PADDING_INDEX)) +
- input_offset);
- bool is_phpwzero = param.filter_meta.padding[0] == 0 &&
- param.filter_meta.padding[1] == 0;
- if (is_phpwzero) {
- src2 = const_cast<src_ctype*>(
- param.src<src_ctype>(sparam.batch_id, sparam.group_id));
- }
- src_ctype* im2col_dst = static_cast<src_ctype*>(
- bundle_thread.get(THREAD_BUNDLE_IM2COL_INDEX));
- if (sh == 1 && sw == 1) {
- if (is_xcorr) {
- img2col<true>(src2, im2col_dst, oc, oh, ow, ic, ih, iw, fh, fw,
- sparam.ohw_cur_index, sparam.output_block_size);
- } else {
- img2col<false>(src2, im2col_dst, oc, oh, ow, ic, ih, iw, fh, fw,
- sparam.ohw_cur_index, sparam.output_block_size);
- }
- } else {
- if (is_xcorr) {
- img2col_stride<true>(src2, im2col_dst, oc, oh, ow, ic, ih, iw, fh,
- fw, sh, sw, sparam.ohw_cur_index,
- sparam.output_block_size);
- } else {
- img2col_stride<false>(src2, im2col_dst, oc, oh, ow, ic, ih, iw, fh,
- fw, sh, sw, sparam.ohw_cur_index,
- sparam.output_block_size);
- }
- }
- }
-
- template <typename src_ctype, typename bias_ctype, typename dst_ctype,
- typename op_ctype, typename op_dtype,
- megdnn::PostprocessMode postprocess_mode>
- void* Strategy<src_ctype, bias_ctype, dst_ctype, op_ctype, op_dtype,
- postprocess_mode, PackMode::ONLY_PACKA>::
- get_matmul_dst_ptr(const fallback::ConvBiasImpl::NCBKernParam& param,
- const WorkspaceBundle& bundle_thread,
- const StrategyParam& sparam) {
- if (sparam.is_dst_8bit || !sparam.is_ohw_size_bigger) {
- return static_cast<bias_ctype*>(
- bundle_thread.get(THREAD_BUNDLE_MATMULDST_INDEX));
- } else {
- bias_ctype* dst =
- param.dst<bias_ctype>(sparam.batch_id, sparam.group_id) +
- sparam.oc_cur_index * sparam.ohw;
- return static_cast<void*>(dst);
- }
- }
-
- #define INSTANTIAL_CLASS(_src_ctype, _bias_ctype, _dst_ctype, _op_ctype, \
- _op_dtype, _postprocess_mode) \
- template class Strategy<_src_ctype, _bias_ctype, _dst_ctype, _op_ctype, \
- _op_dtype, _postprocess_mode, \
- PackMode::ONLY_PACKA>;
-
- INSTANTIAL_CLASS(dt_float32, dt_float32, dt_float32, dt_float32, dt_float32,
- megdnn::PostprocessMode::FLOAT)
-
- #undef INSTANTIAL_CLASS
- } // namespace megdnn
-
- // vim: syntax=cpp.doxygen
|