|
- /**
- * \file dnn/test/cuda/group_conv3d.cpp
- * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- *
- * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- */
- #include "megdnn/oprs/nn.h"
-
- #include "test/common/benchmarker.h"
- #include "test/common/checker.h"
- #include "test/common/convolution3d.h"
- #include "test/cuda/fixture.h"
-
- #include "src/cuda/utils.h"
-
- namespace megdnn {
- namespace test {
-
- TEST_F(CUDA, GROUP_CONVOLUTION3D_FORWARD) {
- bool is_int_available = cuda::is_compute_capability_required(6, 1);
- static_cast<void>(is_int_available);
- auto run = [&](size_t N, size_t IC, size_t ID, size_t IH, size_t IW,
- size_t FD, size_t FH, size_t FW, size_t OC, size_t PD,
- size_t PH, size_t PW, size_t SD, size_t SH, size_t SW,
- size_t DD, size_t DH, size_t DW, size_t group) {
- {
- // float case
- Checker<Convolution3D> checker(handle_cuda());
- Convolution3D::Param param;
- param.sparse = Convolution3D::Param::Sparse::GROUP;
- param.pad_d = PD;
- param.pad_h = PH;
- param.pad_w = PW;
- param.stride_d = SD;
- param.stride_h = SH;
- param.stride_w = SW;
- param.dilate_d = DD;
- param.dilate_h = DH;
- param.dilate_w = DW;
- auto ICpg = IC / group;
- auto OCpg = OC / group;
- checker.set_param(param).exec(
- {{N, IC, ID, IH, IW}, {group, OCpg, ICpg, FD, FH, FW}, {}});
- }
- };
- // normal case
- run(2, 64, 7, 7, 7, 1, 1, 1, 32, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2);
- run(1, 2, 2, 2, 2, 1, 1, 2, 2, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2);
- run(2, 64, 7, 7, 7, 3, 3, 3, 32, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2);
- // padded case
- run(2, 32, 7, 7, 7, 3, 3, 3, 64, 2, 2, 2, 1, 1, 1, 1, 1, 1, 4);
- // strided case
- run(2, 32, 7, 7, 7, 3, 3, 3, 64, 0, 0, 0, 2, 2, 2, 1, 1, 1, 8);
- // dilated case
- #if CUDNN_MAJOR >= 6
- run(10, 4, 64, 64, 12, 3, 2, 2, 64, 0, 0, 0, 1, 1, 1, 3, 4, 2, 4);
- #else
- #endif
- }
-
- TEST_F(CUDA, GROUP_CONVOLUTION3D_FORWARD_1x1x1) {
- auto run = [&](size_t N, size_t IC, size_t ID, size_t IH, size_t IW,
- size_t FD, size_t FH, size_t FW, size_t OC, size_t group) {
- Checker<Convolution3D> checker(handle_cuda());
- checker.set_before_exec_callback(AlgoChecker<Convolution3DForward>(
- ExecutionPolicyAlgoName{"CUDA:GROUP_CONV3D_FORWARD",
- {{"1x1x1",
- {}}}}));
- Convolution3D::Param param;
- param.sparse = Convolution3D::Param::Sparse::GROUP;
- auto ICg = IC / group;
- auto OCg = OC / group;
- checker.set_param(param).exec(
- {{N, IC, ID, IH, IW}, {group, OCg, ICg, FD, FH, FW}, {}});
- };
- size_t ic = 192;
- for (size_t g = 2; g <= 4; g += 1) {
- for (size_t id = 4; id <= 16; id *= 2) {
- size_t iw = id, ih = id;
- run(2, ic, id, ih, iw, 1, 1, 1, ic / g, g);
- run(2, ic, id + 1, ih + 1, iw + 1, 1, 1, 1, ic / g, g);
- }
- }
- }
-
- TEST_F(CUDA, GROUP_CONVOLUTION3D_BACKWARD_DATA) {
- auto run = [&](size_t N, size_t IC, size_t ID, size_t IH, size_t IW,
- size_t FD, size_t FH, size_t FW, size_t OC, size_t OD,
- size_t OH, size_t OW, size_t PD, size_t PH, size_t PW,
- size_t SD, size_t SH, size_t SW, size_t group) {
- Checker<Convolution3DBackwardData> checker(handle_cuda());
- Convolution3DBackwardData::Param param;
- param.sparse = Convolution3D::Param::Sparse::GROUP;
- param.pad_d = PD;
- param.pad_h = PH;
- param.pad_w = PW;
- param.stride_d = SD;
- param.stride_h = SH;
- param.stride_w = SW;
- auto ICg = IC / group;
- auto OCg = OC / group;
- checker.set_param(param).exec({{group, OCg, ICg, FD, FH, FW},
- {N, OC, OD, OH, OW},
- {N, IC, ID, IH, IW}});
- };
- // bug case in prev ver
-
- run(1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 0, 0, 1, 1, 1, 1, 2);
- run(1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 0, 0, 1, 1, 1, 2, 2);
- run(1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 0, 1, 0, 1, 2, 1, 2);
- run(1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 0, 0, 2, 1, 1, 2);
- // normal case
- run(2, 64, 7, 7, 7, 3, 3, 3, 32, 5, 5, 5, 0, 0, 0, 1, 1, 1, 2);
- // padded case
- run(2, 32, 7, 7, 7, 3, 3, 3, 64, 7, 7, 7, 1, 1, 1, 1, 1, 1, 4);
- // strided case
- run(2, 32, 7, 7, 7, 3, 3, 3, 64, 3, 3, 3, 0, 0, 0, 2, 2, 2, 8);
- // bigger case
- run(2, 32, 64, 64, 64, 3, 3, 3, 32, 62, 62, 62, 0, 0, 0, 1, 1, 1, 4);
- }
-
- TEST_F(CUDA, GROUP_CONVOLUTION3D_BACKWARD_DATA_CUDNN) {
- auto run = [&](size_t N, size_t IC, size_t ID, size_t IH, size_t IW,
- size_t FD, size_t FH, size_t FW, size_t OC, size_t OD,
- size_t OH, size_t OW, size_t PD, size_t PH, size_t PW,
- size_t SD, size_t SH, size_t SW, size_t group) {
- Checker<Convolution3DBackwardData> checker(handle_cuda());
- checker.set_before_exec_callback(
- AlgoChecker<Convolution3DBackwardData>(ExecutionPolicyAlgoName{
- "CUDA:GROUP_CONV3D_BACKWARD_DATA", {{"CUDNN", {}}}}));
- Convolution3DBackwardData::Param param;
- param.sparse = Convolution3D::Param::Sparse::GROUP;
- param.pad_d = PD;
- param.pad_h = PH;
- param.pad_w = PW;
- param.stride_d = SD;
- param.stride_h = SH;
- param.stride_w = SW;
- auto ICg = IC / group;
- auto OCg = OC / group;
- checker.set_param(param).exec({{group, OCg, ICg, FD, FH, FW},
- {N, OC, OD, OH, OW},
- {N, IC, ID, IH, IW}});
- };
- // bug case in prev ver
-
- run(1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 0, 0, 1, 1, 1, 1, 2);
- run(1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 0, 0, 1, 1, 1, 2, 2);
- run(1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 0, 1, 0, 1, 2, 1, 2);
- run(1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 0, 0, 2, 1, 1, 2);
- // normal case
- run(2, 64, 7, 7, 7, 3, 3, 3, 32, 5, 5, 5, 0, 0, 0, 1, 1, 1, 2);
- // padded case
- run(2, 32, 7, 7, 7, 3, 3, 3, 64, 7, 7, 7, 1, 1, 1, 1, 1, 1, 4);
- // strided case
- run(2, 32, 7, 7, 7, 3, 3, 3, 64, 3, 3, 3, 0, 0, 0, 2, 2, 2, 8);
- // bigger case
- run(2, 32, 64, 64, 64, 3, 3, 3, 32, 62, 62, 62, 0, 0, 0, 1, 1, 1, 4);
- }
-
- TEST_F(CUDA, GROUP_CONVOLUTION3D_BACKWARD_FILTER) {
- auto run = [&](size_t N, size_t IC, size_t ID, size_t IH, size_t IW,
- size_t FD, size_t FH, size_t FW, size_t OC, size_t OD,
- size_t OH, size_t OW, size_t PD, size_t PH, size_t PW,
- size_t SD, size_t SH, size_t SW, size_t group) {
- Checker<Convolution3DBackwardFilter> checker(handle_cuda());
- Convolution3DBackwardFilter::Param param;
- param.sparse = Convolution3D::Param::Sparse::GROUP;
- param.pad_d = PD;
- param.pad_h = PH;
- param.pad_w = PW;
- param.stride_d = SD;
- param.stride_h = SH;
- param.stride_w = SW;
- auto ICg = IC / group;
- auto OCg = OC / group;
- checker.set_param(param).exec({{N, IC, ID, IH, IW},
- {N, OC, OD, OH, OW},
- {group, OCg, ICg, FD, FH, FW}});
- };
- // normal case
- run(2, 64, 7, 7, 7, 3, 3, 3, 32, 5, 5, 5, 0, 0, 0, 1, 1, 1, 2);
- // padded case
- run(2, 32, 7, 7, 7, 3, 3, 3, 64, 7, 7, 7, 1, 1, 1, 1, 1, 1, 4);
- // strided case
- run(2, 32, 7, 7, 7, 3, 3, 3, 64, 3, 3, 3, 0, 0, 0, 2, 2, 2, 8);
- }
-
- TEST_F(CUDA, GROUP_CONVOLUTION3D_BACKWARD_FILTER_CUDNN) {
- auto run = [&](size_t N, size_t IC, size_t ID, size_t IH, size_t IW,
- size_t FD, size_t FH, size_t FW, size_t OC, size_t OD,
- size_t OH, size_t OW, size_t PD, size_t PH, size_t PW,
- size_t SD, size_t SH, size_t SW, size_t group) {
- Checker<Convolution3DBackwardFilter> checker(handle_cuda());
- checker.set_before_exec_callback(
- AlgoChecker<Convolution3DBackwardFilter>(
- ExecutionPolicyAlgoName{
- "CUDA:GROUP_CONV3D_BACKWARD_FILTER",
- {{"CUDNN", {}}}}));
- Convolution3DBackwardFilter::Param param;
- param.sparse = Convolution3D::Param::Sparse::GROUP;
- param.pad_d = PD;
- param.pad_h = PH;
- param.pad_w = PW;
- param.stride_d = SD;
- param.stride_h = SH;
- param.stride_w = SW;
- auto ICg = IC / group;
- auto OCg = OC / group;
- checker.set_param(param).exec({{N, IC, ID, IH, IW},
- {N, OC, OD, OH, OW},
- {group, OCg, ICg, FD, FH, FW}});
- };
- // normal case
- run(2, 64, 7, 7, 7, 3, 3, 3, 32, 5, 5, 5, 0, 0, 0, 1, 1, 1, 2);
- // padded case
- run(2, 32, 7, 7, 7, 3, 3, 3, 64, 7, 7, 7, 1, 1, 1, 1, 1, 1, 4);
- // strided case
- run(2, 32, 7, 7, 7, 3, 3, 3, 64, 3, 3, 3, 0, 0, 0, 2, 2, 2, 8);
- }
-
- } // namespace test
- } // namespace megdnn
-
- // vim: syntax=cpp.doxygen
|