|
- #include "megbrain/imperative/opr_utility.h"
- #include "megbrain/imperative/ops/autogen.h"
- #include "megbrain/imperative/utils/stats.h"
- #include "megbrain/opr/basic_arith.h"
- #include "megbrain/opr/blas.h"
- #include "megbrain/opr/utility.h"
-
- #include "../blob_manager_impl.h"
- #include "../dnn_op_helper.h"
- #include "../op_trait.h"
-
- namespace mgb {
- namespace imperative {
-
- namespace {
- namespace dot {
-
- auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) {
- auto&& op = def.cast_final_safe<Dot>();
- mgb_assert(inputs.size() == 2);
- OperatorNodeConfig config{op.make_name()};
- return opr::Dot::make(inputs[0], inputs[1], config);
- }
-
- SmallVector<TensorPtr> apply_on_physical_tensor(
- const OpDef& def, const SmallVector<TensorPtr>& inputs,
- SmallVector<LogicalTensorDesc>& output_descs, const bool& validated) {
- auto comp_node = inputs[0]->comp_node();
- using TensorND = megdnn::TensorND;
- SmallVector<TensorND> inp_tensornds;
- inp_tensornds.reserve(inputs.size());
- DnnOprCaller<megdnn::Dot> dnn_opr(comp_node);
- for (unsigned i = 0; i < inputs.size(); ++i) {
- auto dnn_ten = inputs[i]->dnn_tensor();
- inp_tensornds.push_back(dnn_ten);
- }
- TensorLayout oup_layout{inputs[0]->dtype()};
- auto inp1_tensor = inputs[0]->dnn_tensor();
- auto inp2_tensor = inputs[1]->dnn_tensor();
- dnn_opr.op->deduce_layout(inp1_tensor.layout, inp2_tensor.layout, oup_layout);
-
- if (inputs[0]->layout().is_empty() || inputs[1]->layout().is_empty()) {
- DnnOprCaller<megdnn::Fill> fill_opr(comp_node);
- DeviceTensorND out =
- BlobManager::inst()->alloc_workspace_with_defrag(comp_node, oup_layout);
- fill_opr.op->param() = 0;
- fill_opr.op->exec(out.as_megdnn(), {});
- return {Tensor::make(out)};
- }
-
- auto sz = dnn_opr.op->get_workspace_in_bytes(
- inp_tensornds[0].layout, inp_tensornds[1].layout, output_descs[0].layout);
-
- DeviceTensorND out_devtensor =
- BlobManager::inst()->alloc_workspace_with_defrag(comp_node, oup_layout);
-
- TensorLayout w_layout({sz}, dtype::Byte());
- auto dnn_wk = dnn_opr.create_workspace(w_layout);
-
- dnn_opr.op->exec(
- inp_tensornds[0], inp_tensornds[1], out_devtensor.as_megdnn(), dnn_wk);
-
- return {Tensor::make(out_devtensor)};
- }
-
- std::tuple<SmallVector<LogicalTensorDesc>, bool> infer_output_attrs_fallible(
- const OpDef& def, const SmallVector<LogicalTensorDesc>& inputs) {
- mgb_assert(
- inputs.size() == 2, "Dot expects 2 inputs; got %lu actually",
- inputs.size());
- SmallVector<LogicalTensorDesc> dests(1);
- dests[0].layout = TensorLayout(TensorShape{1}, inputs[0].layout.dtype);
- dests[0].comp_node = inputs[0].comp_node;
- bool validated = inputs[0].layout.ndim != 0 && inputs[1].layout.ndim != 0;
- return {dests, validated};
- }
-
- OP_TRAIT_REG(Dot, Dot, mgb::opr::Dot)
- .apply_on_var_node(apply_on_var_node)
- .infer_output_attrs_fallible(infer_output_attrs_fallible)
- .apply_on_physical_tensor(apply_on_physical_tensor)
- .fallback();
-
- } // namespace dot
- } // anonymous namespace
- } // namespace imperative
- } // namespace mgb
|