|
- # -*- coding: utf-8 -*-
- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
- #
- # Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
- #
- # Unless required by applicable law or agreed to in writing,
- # software distributed under the License is distributed on an
- # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- import os
- from typing import Iterable, Union
-
- from ..functional.inplace import _inplace_add_
- from ..tensor import Parameter, tensor
- from .optimizer import Optimizer
-
-
- class SGD(Optimizer):
- r"""Implements stochastic gradient descent.
-
- Nesterov momentum is based on the formula from
- `"On the importance of initialization and momentum in deep learning" <http://www.cs.toronto.edu/%7Ehinton/absps/momentum.pdf>`_ .
-
- Args:
- params: iterable of parameters to optimize or dicts defining
- parameter groups.
- lr: learning rate.
- momentum: momentum factor. Default: 0.0
- nesterov: enables Nesterov momentum. Default: False
- weight_decay: weight decay (L2 penalty). Default: 0.0
- """
-
- def __init__(
- self,
- params: Union[Iterable[Parameter], dict],
- lr: float,
- momentum: float = 0.0,
- nesterov: bool = False,
- weight_decay: float = 0.0,
- ):
- assert lr >= 0.0, "Invalid learning rate: {}".format(lr)
- assert momentum >= 0.0, "Invalid momentum value: {}".format(momentum)
- assert weight_decay >= 0.0, "Invalid weight_decay value: {}".format(
- weight_decay
- )
- assert not nesterov or momentum > 0.0, "Nesterov momentum requires a momentum"
-
- defaults = dict(lr=lr, momentum=momentum, weight_decay=weight_decay)
- super().__init__(params, defaults)
- self.nesterov = nesterov
- self._disable_type_convert = True
-
- def _create_state(self, param_group):
- if param_group["momentum"] != 0.0:
- for param in param_group["params"]:
- self._add_state(param, "momentum_buffer")
-
- def _updates(self, param_group):
- lr = param_group["lr"]
- weight_decay = param_group["weight_decay"]
- momentum = param_group["momentum"]
-
- # since `conver_inputs` is disabled for param updates,
- # scalar should be explicitly tansforred to tensor
-
- _lr = tensor(lr)
- _weight_decay = tensor(weight_decay)
- _momentum = tensor(momentum)
-
- inplace_mode = int(os.getenv("MEGENGINE_INPLACE_UPDATE", "0"))
- if inplace_mode:
- _neg_lr = tensor(-lr)
- c1 = tensor([1.0])
-
- for param in param_group["params"]:
- if param.grad is None:
- continue
-
- grad = param.grad
- if weight_decay != 0.0:
- grad = grad + param * _weight_decay
-
- if inplace_mode:
- if momentum != 0.0:
- v = self._state[param]["momentum_buffer"]
- _inplace_add_(v, grad, alpha=_momentum, beta=c1)
- if self.nesterov:
- grad = grad + v * _momentum
- else:
- grad = v
- _inplace_add_(param, grad, alpha=c1, beta=_neg_lr)
- continue
-
- if momentum != 0.0:
- v = self._state[param]["momentum_buffer"]
- v *= _momentum
- v += grad
- if self.nesterov:
- grad = grad + v * _momentum
- else:
- grad = v
- param -= _lr * grad
|