|
- #include "megbrain/opr/basic_arith.h"
- #include "megbrain/gopt/basic_arith.h"
- #include "megbrain/gopt/gtrans.h"
- #include "megbrain/graph/grad_impl.h"
- #include "megbrain/opr/basic_arith_wrapper.h"
- #include "megbrain/opr/cond.h"
- #include "megbrain/opr/io.h"
- #include "megbrain/opr/tensor_manip.h"
- #include "megbrain/opr/utility.h"
- #include "megbrain/utils/arith_helper.h"
-
- #include "./internal/megdnn_opr_wrapper.inl"
-
- #include <cmath>
-
- using namespace mgb;
- using namespace opr;
-
- /* ========================= BatchedDTypePromotion ========================= */
- intl::BatchedDTypePromotion::BatchedDTypePromotion(const VarNodeArrayView& vars)
- : m_orig_vars{vars} {
- mgb_assert(!vars.empty());
- DType final_dtype;
- bool changed = false;
- for (size_t i = 0; i < vars.size(); ++i) {
- auto cur = vars[i]->dtype();
- if (!i) {
- final_dtype = cur;
- } else {
- auto promoted = dtype_promotion(final_dtype, cur);
- changed |= promoted != final_dtype || promoted != cur;
- final_dtype = promoted;
- }
- }
- m_changed = changed;
- m_final_dtype = final_dtype;
- }
-
- void intl::BatchedDTypePromotion::set_dtype(DType dtype) {
- mgb_assert(!m_finalized);
- if (m_final_dtype != dtype) {
- m_final_dtype = dtype;
- m_changed = true;
- }
- }
-
- const VarNodeArrayView& intl::BatchedDTypePromotion::get_vars() {
- m_finalized = true;
- if (!m_changed) {
- return m_orig_vars;
- }
- if (!m_cvt_vars_view.valid()) {
- m_cvt_vars.resize(m_orig_vars.size());
- auto dtype = m_final_dtype;
- for (size_t i = 0; i < m_cvt_vars.size(); ++i) {
- m_cvt_vars[i] = TypeCvt::make(m_orig_vars[i], dtype).node();
- }
- m_cvt_vars_view.emplace(m_cvt_vars);
- }
- return m_cvt_vars_view.val();
- }
-
- /* =========================== Elemwise =========================== */
-
- MGB_DYN_TYPE_OBJ_FINAL_IMPL(Elemwise);
- Elemwise::Elemwise(
- const ModeTrait& mode_trait, const VarNodeArrayView& inputs, Param param,
- const OperatorNodeConfig& config)
- : Super{inputs.at(0)->owner_graph(), config, mode_trait.name, inputs} {
- init_megdnn_opr(*this, param);
- output(0)->add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
- if (mode_trait.commutable) {
- mgb_assert(inputs.size() == 2);
- add_input({inputs[0], inputs[1]}, AddInputSortType::CUR_ADDED);
- } else {
- if (param.mode == Mode::FUSE_MUL_ADD3) {
- add_input({inputs[0], inputs[1]}, AddInputSortType::CUR_ADDED);
- add_input({inputs[2]});
- } else if (param.mode == Mode::FUSE_MUL_ADD4) {
- auto i0 = inputs[0], i1 = inputs[1], i2 = inputs[2], i3 = inputs[3];
- if (i0->id() > i1->id())
- std::swap(i0, i1);
- if (i2->id() > i3->id())
- std::swap(i2, i3);
- if (i0->id() > i2->id()) {
- std::swap(i0, i2);
- std::swap(i1, i3);
- }
- add_input({i0, i1, i2, i3});
- } else {
- for (auto i : inputs)
- add_input({i});
- }
- }
-
- mgb_assert(m_input_broadcastable.size() >= inputs.size());
- for (size_t i = 0; i < inputs.size(); ++i) {
- if (input()[i]->owner_opr()->same_type<opr::MarkNoBroadcastElemwise>()) {
- m_input_broadcastable[i] = false;
- } else {
- m_input_broadcastable[i] = true;
- }
- }
- if (inputs.size() == 1) {
- m_input_broadcastable[0] = false;
- } else {
- Maybe<size_t> non_scalar;
- using namespace cg::static_infer;
- auto&& mgr = owner_graph()->static_infer_manager();
- for (size_t i = 0; i < input().size(); ++i) {
- auto it = mgr.get_infer_type(input(i));
- if (!((it.shape & InferType::CONST) &&
- mgr.infer_shape(input(i)).is_scalar())) {
- if (non_scalar.valid()) {
- non_scalar.invalidate();
- break;
- }
- non_scalar = i;
- }
- }
- if (non_scalar.valid()) {
- // exactly one input is non-scalar
- m_input_broadcastable[non_scalar.val()] = false;
- }
- }
-
- if (inputs.size() && inputs[0]->dtype().category() == DTypeCategory::QUANTIZED) {
- mgb_assert(
- param.mode == Param::Mode::ADD || param.mode == Param::Mode::SUB ||
- param.mode == Param::Mode::NEGATE ||
- param.mode == Param::Mode::RELU ||
- param.mode == Param::Mode::MAX ||
- param.mode == Param::Mode::MIN,
- "Only ADD, SUB, NEGATE, RELU, MAX and MIN is guaranteed "
- "to be supported on Elemwise for quantized DType, no support %d",
- (int)param.mode);
- }
- }
-
- SymbolVar Elemwise::make(
- const VarNodeArrayView& inputs, Param param, const OperatorNodeConfig& config) {
- auto trait = ModeTrait::from_mode(param.mode);
- mgb_assert(
- inputs.size() == trait.arity, "%s expects %u inputs; got %zu actually",
- trait.name, trait.arity, inputs.size());
- intl::BatchedDTypePromotion dtp{inputs};
- if (dtp.get_dtype().category() == DTypeCategory::INT && !trait.allow_int) {
- dtp.set_dtype(dtype::Float32());
- }
-
- mgb_throw_if(
- dtp.get_dtype().category() == DTypeCategory::FLOAT && !trait.allow_float,
- ConversionError,
- "elemwise mode %s does not allow float input; "
- "got inputs: %s",
- trait.name, cg::dump_var_info(inputs).c_str());
-
- #if !MGB_BUILD_SLIM_SERVING
- auto&& options = inputs[0]->owner_graph()->options();
- if (options.graph_opt_level && !(options.disable_inplace_arith_opt)) {
- auto repl = gopt::optimize_elemwise_expr_inplace(dtp.get_vars(), param, config);
- if (repl)
- return repl;
- }
- #endif
-
- return SymbolVar{inputs[0]}.insert_single_output_opr<Elemwise>(
- trait, dtp.get_vars(), param, config);
- }
-
- TensorShape Elemwise::get_output_var_shape(
- Mode mode, const TensorShapeArray& input_shapes) {
- mgb_assert(input_shapes.size() == ModeTrait::from_mode(mode).arity);
- TensorShape ret;
- megdnn::Elemwise::deduce_shape(input_shapes, ret);
- return ret;
- }
-
- void Elemwise::perform(
- Mode mode, DeviceTensorND& dest, const SmallVector<DeviceTensorND>& inputs,
- intl::UniqPtrWithCN<megdnn::Elemwise>& opr) {
- megdnn::TensorNDArray dnn_inputs(inputs.size());
- TensorShapeArray inp_shapes(inputs.size());
- DType out_dt;
- CompNode out_cn;
- for (size_t i = 0; i < inputs.size(); ++i) {
- auto&& t = inputs[i];
- if (!i) {
- out_cn = t.comp_node();
- out_dt = t.dtype();
- } else {
- mgb_assert(t.comp_node() == out_cn);
- mgb_assert(t.dtype() == out_dt);
- }
- if (t.shape().is_empty()) {
- mgb_assert(dest.empty());
- return;
- }
- inp_shapes[i] = t.shape();
- }
- if (!opr) {
- opr = intl::create_megdnn_opr<megdnn::Elemwise>(out_cn);
- } else {
- mgb_assert(out_cn == opr.comp_node());
- }
- out_cn.activate();
- for (size_t i = 0; i < inputs.size(); ++i)
- dnn_inputs[i] = inputs[i].as_megdnn();
- dest.comp_node(out_cn).dtype(out_dt).resize(get_output_var_shape(mode, inp_shapes));
- opr->param() = {mode};
- call_megdnn_opr_exec(out_cn, dnn_inputs, dest.as_megdnn(), opr.get(), nullptr);
- }
-
- void Elemwise::perform_dnn(
- CompNode cn, const megdnn::TensorND& dest, megdnn::TensorNDArray& inputs,
- intl::UniqPtrWithCN<megdnn::Elemwise>& opr) {
- call_megdnn_opr_exec(cn, inputs, dest, opr.get(), nullptr);
- }
-
- TensorLayoutArray Elemwise::collective_collapse(const TensorLayoutArray& layouts) {
- TensorLayoutPtrArray inp(layouts.size());
- TensorLayoutArray result(inp.size());
- for (size_t i = 0; i < layouts.size(); ++i) {
- result[i] = layouts[i];
- inp[i] = &result[i];
- }
- collective_collapse_inplace(inp);
- return result;
- }
-
- void Elemwise::collective_collapse_inplace(const TensorLayoutPtrArray& layouts) {
- mgb_assert(layouts.size());
- size_t ndim = layouts[0]->ndim;
- for (auto i : layouts) {
- if (i->ndim != ndim)
- mgb_throw(MegBrainError, "ndims must be same");
- }
-
- auto update_all = [&layouts](size_t axis) {
- for (auto i : layouts) {
- i->shape[axis] *= i->shape[axis + 1];
- i->stride[axis] = i->stride[axis + 1];
- i->remove_axis_inplace(axis + 1);
- }
- };
-
- auto check = [&layouts](size_t axis) -> bool {
- auto std_p =
- std::make_pair(layouts[0]->shape[axis], layouts[0]->shape[axis + 1]);
- for (auto i : layouts) {
- auto cur_p = std::make_pair(i->shape[axis], i->shape[axis + 1]);
- if (std_p != cur_p)
- return false;
- if (i->stride[axis] !=
- i->stride[axis + 1] * static_cast<ptrdiff_t>(i->shape[axis + 1]))
- return false;
- }
- return true;
- };
-
- for (int i = static_cast<int>(ndim) - 2; i >= 0; i--) {
- if (check(i)) {
- update_all(i);
- }
- }
- }
-
- void Elemwise::broadcast_collective_collapse(
- const TensorLayoutPtrArray& inp_layouts, TensorLayout* target_layout) {
- for (auto&& p : inp_layouts) {
- *p = p->broadcast(*target_layout);
- }
- TensorLayoutPtrArray buf(inp_layouts.size() + 1);
- buf[0] = target_layout;
- for (size_t i = 0; i < inp_layouts.size(); i++) {
- buf[i + 1] = inp_layouts[i];
- }
- collective_collapse_inplace(buf);
- }
-
- void Elemwise::mem_plan_fwd_in2out_writable() {
- mixin_mem_plan_fwd_in2out_writable(*this);
- }
-
- void Elemwise::scn_do_execute() {
- auto&& inp = input();
- megdnn::TensorNDArray dnn_inp;
- mgb_assert(dnn_inp.capacity() >= inp.size(), "heap allocation in elemwise exec");
- dnn_inp.resize(inp.size());
- for (size_t i = 0; i < inp.size(); ++i) {
- if (inp[i]->dev_tensor().empty()) {
- mgb_assert(output(0)->dev_tensor().empty());
- return;
- }
- dnn_inp[i] = (inp[i]->dev_tensor().as_megdnn());
- }
- mgb_assert(!output(0)->dev_tensor().empty());
-
- megdnn_opr()->param() = param();
- call_megdnn_opr_exec(
- comp_node(), dnn_inp, output(0)->dev_tensor().as_megdnn(), megdnn_opr(),
- this);
- }
-
- void Elemwise::init_output_static_infer_desc() {
- Super::init_output_static_infer_desc();
- static StaticInferOpr<megdnn::Elemwise> static_infer_opr;
-
- using namespace cg::static_infer;
-
- auto infer_value = [this](DeviceTensorND& dest, const InpVal& inp) {
- SmallVector<DeviceTensorND> inp_vals(inp.val.size());
- for (size_t i = 0; i < inp_vals.size(); ++i)
- inp_vals[i] = inp.val[i].value();
- auto sopr = static_infer_opr.lock();
- perform(param().mode, dest, inp_vals, sopr());
- return true;
- };
-
- DepVal deps(input().size());
- for (size_t i = 0; i < input().size(); ++i)
- deps[i] = {input(i), DepType::VALUE};
- owner_graph()->static_infer_manager().register_value_infer(
- output(0), {SourceType::DEP, deps, infer_value});
- }
-
- void Elemwise::get_output_var_shape(
- const TensorShapeArray& inp_shape, TensorShapeArray& out_shape) const {
- out_shape.at(0) = get_output_var_shape(param().mode, inp_shape);
- for (size_t i = 0; i < input().size(); ++i) {
- mgb_throw_if(
- !m_input_broadcastable[i] && !out_shape[0].eq_shape(inp_shape[i]),
- GraphError,
- "input %zu declared to be non-broadcastable but broacast "
- "actually happened",
- i);
- }
- }
-
- void Elemwise::add_input_layout_constraint() {
- for (auto i : input()) {
- i->add_layout_constraint_monotone();
- }
- }
-
- void Elemwise::call_megdnn_opr_exec(
- CompNode comp_node, megdnn::TensorNDArray& inp, const megdnn::TensorND& out,
- megdnn::Elemwise* opr, Elemwise* caller) {
- if (opr->param().mode == Mode::FUSE_MUL_ADD3 &&
- !(inp[2].layout.eq_layout(inp[0].layout) ||
- inp[2].layout.eq_layout(inp[1].layout) || inp[2].layout.is_scalar())) {
- if (caller && !caller->fuse_badlayout_warn_printed()) {
- mgb_log_debug(
- "%s: FUSE_MUL_ADD3 input layouts mismatch: %s %s %s; "
- "fallback to normal computing",
- caller->cname(), inp[0].layout.to_string().c_str(),
- inp[1].layout.to_string().c_str(),
- inp[2].layout.to_string().c_str());
- caller->m_fuse_badlayout_warn_printed = true;
- }
-
- for (auto&& i : inp) {
- i.layout = i.layout.broadcast(out.layout);
- }
-
- megdnn::TensorNDArray run_inp(2);
- auto run = [&](Mode mode, const megdnn::TensorND& i0,
- const megdnn::TensorND& i1, const megdnn::TensorND& out) {
- run_inp[0] = i0;
- run_inp[1] = i1;
- opr->param() = {mode};
- opr->exec(run_inp, out);
- };
-
- auto tmp = intl::get_temp_tensor(
- caller ? caller->owner_graph() : nullptr, comp_node, out.layout);
- auto tmpv = tmp.as_megdnn();
-
- MGB_TRY {
- run(Mode::MUL, inp[0], inp[1], tmpv);
- run(Mode::ADD, inp[2], tmpv, out);
- }
- MGB_FINALLY(opr->param() = {Mode::FUSE_MUL_ADD3});
- return;
- }
-
- if (opr->param().mode == Mode::FUSE_MUL_ADD4 &&
- !(inp[0].layout.eq_layout(inp[2].layout) &&
- inp[1].layout.eq_layout(inp[3].layout)) &&
- !(inp[0].layout.eq_layout(inp[3].layout) &&
- inp[1].layout.eq_layout(inp[2].layout))) {
- if (caller && !caller->fuse_badlayout_warn_printed()) {
- mgb_log_debug(
- "%s: FUSE_MUL_ADD4 input layouts mismatch: %s %s %s %s; "
- "fallback to normal computing",
- caller->cname(), inp[0].layout.to_string().c_str(),
- inp[1].layout.to_string().c_str(),
- inp[2].layout.to_string().c_str(),
- inp[3].layout.to_string().c_str());
- caller->m_fuse_badlayout_warn_printed = true;
- }
-
- for (auto&& i : inp) {
- i.layout = i.layout.broadcast(out.layout);
- }
-
- megdnn::TensorNDArray run_inp(2);
- auto run = [&](Mode mode, const megdnn::TensorND& i0,
- const megdnn::TensorND& i1, const megdnn::TensorND& out) {
- run_inp[0] = i0;
- run_inp[1] = i1;
- opr->param() = {mode};
- opr->exec(run_inp, out);
- };
-
- auto tmp = intl::get_temp_tensor(
- caller ? caller->owner_graph() : nullptr, comp_node, out.layout);
- auto tmpv = tmp.as_megdnn();
-
- MGB_TRY {
- run(Mode::MUL, inp[0], inp[1], tmpv);
- run(Mode::MUL, inp[2], inp[3], out);
- run(Mode::ADD, out, tmpv, out);
- }
- MGB_FINALLY(opr->param() = {Mode::FUSE_MUL_ADD4});
- return;
- }
-
- // All Elemwise operations on QuantizedS32/QuantizedS8 are not related to
- // scale. MegDNN does not support computing Elemwise for
- // QuantizedS32/QuantizedS8, we translate the data type to Int32/Int8 before
- // passing to MegDNN.
- if (inp.size() && inp[0].layout.dtype.category() == DTypeCategory::QUANTIZED) {
- auto inp_dtype = inp[0].layout.dtype;
- DType compute_dtype;
- if (inp_dtype.enumv() == DTypeEnum::QuantizedS32) {
- compute_dtype = dtype::Int32();
- } else if (inp_dtype.enumv() == DTypeEnum::QuantizedS8) {
- compute_dtype = dtype::Int8();
- } else {
- mgb_throw(
- MegBrainError, "Unsupported Quantized Elemwise Mode %s: %d on %s",
- inp[0].layout.dtype.name(), int(opr->param().mode),
- comp_node.to_string().c_str());
- }
-
- megdnn::TensorNDArray run_inp(inp);
- for (size_t i = 0; i < inp.size(); i++) {
- run_inp[i].layout.dtype = compute_dtype;
- }
- megdnn::TensorND run_out = out;
- run_out.layout.dtype = compute_dtype;
- opr->exec(run_inp, run_out);
- return;
- }
-
- opr->exec(inp, out);
- }
-
- #if MGB_ENABLE_GRAD
- MGB_IMPL_OPR_GRAD(Elemwise) {
- SymbolVar i[5];
- SymbolVar i0(opr.input(0)), i1, i2, out(opr.output(0)), og{out_grad.at(0)}, result;
- for (size_t t = 0; t < opr.input().size(); ++t)
- i[t] = opr.input()[t];
- if (opr.input().size() >= 2)
- i1 = opr.input(1);
- if (opr.input().size() >= 3)
- i2 = opr.input(2);
-
- // negate after reduce, for better performance
- bool negate_result = false;
- #define RET(_v) \
- result = (_v); \
- break
- #define EL1(_mode, _a) Elemwise::make({_a}, Mode::_mode)
- #define EL2(_mode, _a, _b) Elemwise::make({_a, _b}, Mode::_mode)
- #define EL3(_mode, _a, _b, _c) Elemwise::make({_a, _b, _c}, Mode::_mode)
- #define RET_INVALID() return InvalidGrad::make(opr, wrt_idx)
-
- using Mode = Elemwise::Mode;
-
- switch (opr.param().mode) {
- // unary
- case Mode::RELU:
- case Mode::FUSE_ADD_RELU:
- RET(EL2(SWITCH_GT0, out, og));
- case Mode::ABS:
- RET(EL2(ABS_GRAD, i0, og));
- case Mode::ACOS:
- negate_result = true;
- RET(og / EL1(SIN, out));
- case Mode::ASIN:
- RET(og / EL1(COS, out));
- case Mode::ATAN2:
- if (wrt_idx) {
- negate_result = true;
- }
- RET(og * i[!wrt_idx] / (i0 * i0 + i1 * i1));
- case Mode::CEIL:
- return nullptr;
- case Mode::COS:
- negate_result = true;
- RET(EL1(SIN, i0) * og);
- case Mode::EXP:
- RET(og * out);
- case Mode::EXPM1:
- RET(og * EL1(EXP, i0));
- case Mode::FLOOR:
- return nullptr;
- case Mode::LOG:
- RET(og / i0);
- case Mode::LOG1P:
- RET(og / (i0 + 1));
- case Mode::NEGATE:
- negate_result = true;
- RET(og);
- case Mode::SIGMOID:
- case Mode::FUSE_ADD_SIGMOID:
- RET(EL2(SIGMOID_GRAD, out, og));
- case Mode::SIN:
- RET(EL1(COS, i0) * og);
- case Mode::TANH:
- case Mode::FUSE_ADD_TANH:
- RET(EL2(TANH_GRAD, out, og));
- case Mode::FAST_TANH:
- RET(EL2(FAST_TANH_GRAD, i0, og));
- case Mode::ROUND:
- return nullptr;
- case Mode::ERF:
- RET(EL1(EXP, -i0 * i0) * 2 / static_cast<float>(sqrt(M_PI)) * og);
- case Mode::ERFINV:
- RET(EL1(EXP, out * out) * static_cast<float>(sqrt(M_PI)) / 2 * og);
- case Mode::ERFC:
- RET(-EL1(EXP, -i0 * i0) * 2 / static_cast<float>(sqrt(M_PI)) * og);
- case Mode::H_SWISH:
- RET(EL2(H_SWISH_GRAD, i0, og));
- case Mode::FUSE_ADD_H_SWISH:
- RET(EL2(H_SWISH_GRAD, (i0 + i1), og));
- case Mode::NOT:
- return nullptr;
- case Mode::SILU:
- RET(EL2(SILU_GRAD, i0, og));
- case Mode::GELU:
- RET(EL2(GELU_GRAD, i0, og));
-
- // binary
- case Mode::ABS_GRAD:
- if (wrt_idx == 0) {
- return nullptr;
- }
- RET(EL2(ABS_GRAD, i0, og));
- case Mode::ADD:
- RET(og);
- case Mode::FLOOR_DIV:
- return nullptr;
- case Mode::MAX:
- if (wrt_idx) {
- RET(EL3(COND_LT_MOV, i[0], i[1], og));
- } else {
- RET(EL3(COND_LEQ_MOV, i[1], i[0], og));
- }
- case Mode::MIN:
- if (wrt_idx) {
- RET(EL3(COND_LT_MOV, i[1], i[0], og));
- } else {
- RET(EL3(COND_LEQ_MOV, i[0], i[1], og));
- }
- case Mode::MOD:
- if (wrt_idx == 0) {
- RET(og);
- }
- RET_INVALID();
- case Mode::MUL:
- RET(og * i[!wrt_idx]);
- case Mode::POW:
- if (wrt_idx) {
- RET(out * EL1(LOG, i0) * og);
- }
- RET(og * i1 * EL2(POW, i0, i1 - 1));
- case Mode::SIGMOID_GRAD:
- if (wrt_idx == 0) {
- auto one = i0.make_scalar_dt(1), two = i0.make_scalar_dt(2);
- RET((one - i0 * two) * i1 * og);
- }
- RET(EL2(SIGMOID_GRAD, i0, og));
- case Mode::SUB:
- negate_result = wrt_idx;
- RET(og);
- case Mode::SWITCH_GT0:
- if (!wrt_idx)
- return nullptr;
- RET(EL2(SWITCH_GT0, i0, og));
- case Mode::TANH_GRAD:
- if (wrt_idx == 0) {
- auto mtwo = i0.make_scalar_dt(-2);
- RET(mtwo * i0 * i1 * og);
- }
- RET(EL2(TANH_GRAD, i0, og));
- case Mode::TRUE_DIV:
- if (wrt_idx == 0) {
- RET(og / i1);
- }
- negate_result = true;
- RET((og * i0) * EL2(POW, i1, i1.make_scalar(-2)));
- case Mode::LOG_SUM_EXP:
- if (wrt_idx == 0) {
- RET(og * EL1(SIGMOID, i0 - i1));
- }
- RET(og * EL1(SIGMOID, i1 - i0));
- case Mode::LT:
- case Mode::LEQ:
- return nullptr;
- case Mode::EQ:
- RET_INVALID();
- case Mode::OR:
- case Mode::XOR:
- case Mode::AND:
- return nullptr;
-
- // ternary
- case Mode::COND_LEQ_MOV:
- if (wrt_idx <= 1)
- return nullptr;
- RET(EL3(COND_LEQ_MOV, i0, i1, og));
- case Mode::COND_LT_MOV:
- if (wrt_idx <= 1)
- return nullptr;
- RET(EL3(COND_LT_MOV, i0, i1, og));
- // fuse oprs
- case Mode::FUSE_MUL_ADD3:
- if (wrt_idx < 2) {
- RET(og * i[wrt_idx ^ 1]);
- } else {
- RET(og);
- }
- case Mode::FUSE_MUL_ADD4:
- RET(og * i[wrt_idx ^ 1]);
- default:
- mgb_throw(
- GraphError, "grad for elemwise mode %s unimplemented",
- megdnn::Elemwise::ModeTrait::from_mode(opr.param().mode).name);
- }
- #undef EL3
- #undef EL2
- #undef EL1
- #undef RET
-
- if (opr.input_broadcastable()[wrt_idx]) {
- result = reduce_sum(result, opr::GetVarShape::make(opr.input(wrt_idx)));
- } else if (result.node()->owner_opr()->same_type<Broadcast>()) {
- // forward broadcast for optimizer to work
- result = opr::Broadcast::make(
- result.node()->owner_opr()->input(0),
- opr::GetVarShape::make(i[wrt_idx]));
- }
- if (negate_result)
- result = -result;
- return result.node();
- }
- #endif
-
- VarNode* Elemwise::sum_grad_list(VarNode* wrt, VarNodeArray& grads) {
- mgb_assert(!grads.empty());
- if (grads.size() == 1)
- return grads[0];
- #if MGB_ENABLE_COND_EXEC
- CondExecMerge::modify_grad_sum_list(wrt, grads);
- #endif
- VarNodeArray mid_results;
- VarNode* ret;
- if (wrt->owner_graph()->options().graph_opt_level) {
- ret = gopt::GradSumListOptimizer{wrt, grads, mid_results}.get_sum();
- } else {
- ret = gopt::elemwise_reduce_var_list(grads, Elemwise::Mode::ADD, &mid_results);
- }
- mid_results.swap(grads);
- return ret;
- }
-
- void Elemwise::record_execute_deps(ExecDependencyArray& deps) {
- record_megdnn_opr(deps);
- }
-
- Elemwise::NodeProp* Elemwise::do_make_node_prop() const {
- auto ret = Super::do_make_node_prop();
- for (auto& inp : input()) {
- ret->add_dep_type_existing_var(inp, NodeProp::DepType::VALUE_ALLOW_EMPTY);
- }
- return ret;
- }
-
- /* =========================== TypeCvt =========================== */
-
- MGB_DYN_TYPE_OBJ_FINAL_IMPL(TypeCvt);
-
- TypeCvt::TypeCvt(VarNode* inp, DType dest_type, const OperatorNodeConfig& config)
- : Super{inp->owner_graph(),
- config,
- std::string("as") + dest_type.name(),
- {inp}} {
- init_megdnn_opr(*this, {});
- mgb_assert(dest_type.valid());
- add_input({inp});
- add_equivalence_component<ScalarHash<const void*>>(dest_type.handle());
- output(0)->dtype(dest_type).add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
- }
-
- SymbolVar TypeCvt::make(
- SymbolVar input, DType dest_type, const OperatorNodeConfig& config) {
- if (input.dtype() == dest_type)
- return input;
- return input.insert_single_output_opr<TypeCvt>(input.node(), dest_type, config);
- }
-
- void TypeCvt::perform(
- DeviceTensorND& dest, DType dest_type, const DeviceTensorND& src,
- intl::UniqPtrWithCN<megdnn::TypeCvt>& opr) {
- mgb_assert(src.comp_node() == opr.comp_node());
- mgb_assert(dest_type.valid());
- if (src.empty()) {
- mgb_assert(dest.empty());
- return;
- }
- if (src.dtype() == dest_type) {
- dest.copy_from(src);
- return;
- }
- src.comp_node().activate();
- dest.comp_node(src.comp_node()).dtype(dest_type).resize(src.shape());
- opr->exec(src.as_megdnn(), dest.as_megdnn());
- }
-
- void TypeCvt::add_input_layout_constraint() {
- //! Because the implementation of typecvt on arm/x86/cuda/opencl support
- //! non-contiguous memory. So we change constraint of typecvt to monotone
- for (auto i : input()) {
- i->add_layout_constraint_monotone();
- }
- }
-
- TypeCvt::NodeProp* TypeCvt::do_make_node_prop() const {
- auto ret = Super::do_make_node_prop();
- ret->add_dep_type_existing_var(input(0), NodeProp::DepType::VALUE_ALLOW_EMPTY);
- return ret;
- }
-
- #if MGB_ENABLE_GRAD
- MGB_IMPL_OPR_GRAD(TypeCvt) {
- MGB_MARK_USED_VAR(wrt_idx);
- auto itype = opr.input(0)->dtype(), otype = opr.output(0)->dtype();
- if (itype.category() == DTypeCategory::FLOAT &&
- otype.category() == DTypeCategory::INT) {
- return nullptr;
- }
- if (itype.category() != DTypeCategory::FLOAT) {
- return InvalidGrad::make(opr, 0);
- }
- return TypeCvt::make(out_grad[0], opr.input(0)->dtype()).node();
- }
- #endif
-
- void TypeCvt::mem_plan_fwd_in2out_writable() {
- bool cond_low_bit = input(0)->dtype().is_low_bit() &&
- output(0)->dtype().is_low_bit() &&
- input(0)->dtype().low_bit() == output(0)->dtype().low_bit();
- bool cond_normal = !input(0)->dtype().is_low_bit() &&
- !output(0)->dtype().is_low_bit() &&
- input(0)->dtype().size() == output(0)->dtype().size();
- if ((cond_low_bit || cond_normal) && input(0)->layout().is_contiguous()) {
- output(0)->set_fwd_in2out_writable(input(0));
- }
- }
-
- void TypeCvt::scn_do_execute() {
- auto ovar = output(0)->dev_tensor().as_megdnn();
- for (size_t i = 0; i < ovar.layout.ndim; ++i) {
- if (!ovar.layout[i]) {
- // skip execution for empty var
- return;
- }
- }
- megdnn_opr()->exec(input(0)->dev_tensor().as_megdnn(), ovar);
- }
-
- void TypeCvt::init_output_static_infer_desc() {
- static StaticInferOpr<megdnn::TypeCvt> static_infer_opr;
- Super::init_output_static_infer_desc();
-
- using namespace cg::static_infer;
-
- auto infer_value = [this](DeviceTensorND& dest, const InpVal& inp) {
- auto sopr = static_infer_opr.lock();
- perform(dest, output(0)->dtype(), inp.val.at(0).value(), sopr());
- return true;
- };
- owner_graph()->static_infer_manager().register_value_infer(
- output(0), {SourceType::DEP, {{input(0), DepType::VALUE}}, infer_value});
- }
-
- void TypeCvt::record_execute_deps(ExecDependencyArray& deps) {
- record_megdnn_opr(deps);
- }
-
- /* =========================== AddUpdate =========================== */
-
- MGB_DYN_TYPE_OBJ_FINAL_IMPL(AddUpdate);
-
- AddUpdate::AddUpdate(
- VarNode* dest, VarNode* delta, const Param& param,
- const OperatorNodeConfig& config)
- : Super{dest->owner_graph(), config, "inplace_add", {dest, delta}},
- m_param{param} {
- auto dest_opr = dest->owner_opr();
- mgb_throw_if(
- dest_opr->same_type<ImmutableTensor>(), GraphError,
- "AddUpdate cannot be applied on ImmutableTensor; ");
- add_input({dest, delta});
-
- /*
- * here we tell the system that output(0) would force-update input(0); the
- * topo-sorting system would ensure that all the readers finish before
- * executing this AddUpdate operation
- */
- add_output(None)->set_fwd_in2out_writable_force(input(0)).add_flag(
- VarNode::Flag::NO_MEM_RECLAIM);
-
- mgb_assert(
- m_param.disable->dtype() == dtype::Int32{},
- "dtype of disable flag on AddUpdate must be Int32, got %s actually.",
- m_param.disable->dtype().name());
-
- add_equivalence_component<ScalarHash<void*>>(m_param.alpha.get());
- add_equivalence_component<ScalarHash<void*>>(m_param.beta.get());
- add_equivalence_component<ScalarHash<void*>>(m_param.bias.get());
- add_equivalence_component<ScalarHash<void*>>(m_param.disable.get());
- }
-
- SymbolVar AddUpdate::make(
- SymbolVar dest, SymbolVar delta, const Param& param,
- const OperatorNodeConfig& config) {
- delta = opr::TypeCvt::make(delta, dest.dtype());
- return dest.insert_single_output_opr<AddUpdate>(
- dest.node(), delta.node(), param, config);
- }
-
- cg::OperatorNodeBase::NodeProp* AddUpdate::do_make_node_prop() const {
- auto ret = Super::do_make_node_prop();
- ret->add_flag(NodeProp::Flag::FORCE_UPDATE_INPUT_VAR);
- return ret;
- }
-
- void AddUpdate::create_megdnn_opr() {
- set_megdnn_opr(
- intl::get_megdnn_handle(comp_node())->create_operator<megdnn::AddUpdate>());
- }
-
- void AddUpdate::scn_do_execute() {
- mgb_assert(
- m_param.disable->dtype() == dtype::Int32{},
- "dtype of disable flag on AddUpdate must be Int32, got %s actually.",
- m_param.disable->dtype().name());
- auto disable = m_param.disable->get_cast<int>();
- if (disable == 1)
- return;
- mgb_assert(
- disable == 0,
- "disable flag on AddUpdate can only be 0 or 1,"
- " got %d actually.",
- disable);
-
- auto&& dest = output(0)->dev_tensor();
- auto&& delta_nobrd = input(1)->dev_tensor();
- auto delta = delta_nobrd.sub(SubTensorSpec::make_from_offset_elem(
- delta_nobrd.layout().broadcast(dest.shape()), 0));
- mgb_assert(input(0)->dev_tensor().raw_ptr() == dest.raw_ptr());
- auto beta = m_param.beta->get_cast<float>();
- if (!m_param.alpha->get_cast<bool>() && beta == 1 &&
- !m_param.bias->get_cast<bool>()) {
- dest.copy_from_fixlayout(delta);
- } else {
- auto opr = static_cast<megdnn::AddUpdate*>(megdnn_opr());
- opr->param() = {
- m_param.alpha->get_cast<float>(), beta,
- m_param.bias->get_cast<float>()};
- opr->exec(dest.as_megdnn(), delta.as_megdnn());
- }
- }
-
- void AddUpdate::init_output_static_infer_desc() {
- using namespace cg::static_infer;
-
- owner_graph()->static_infer_manager().register_shape_infer(
- output(0), ShapeInferDesc::make_identity(input(0)));
- }
-
- void AddUpdate::record_execute_deps(ExecDependencyArray& deps) {
- record_megdnn_opr(deps);
- }
-
- #if MGB_ENABLE_GRAD
- MGB_IMPL_OPR_GRAD(AddUpdate) {
- // actually valid, just not implemented
- return InvalidGrad::make(opr, wrt_idx);
- }
- #endif
-
- /* =========================== Reduce =========================== */
-
- class Reduce::KernScheduler {
- class ValueDep final : public ExecDependency {
- DeviceTensorStorage m_val;
-
- public:
- explicit ValueDep(DeviceTensorStorage val) : m_val(std::move(val)) {}
- };
-
- public:
- bool has_actual_computing() const {
- mgb_assert(m_shape_computed);
- return !m_kern_param.empty() || m_apply_side_effect;
- }
-
- size_t workspace_size() const { return m_workspace_spec[2].end(); }
-
- bool shape_computed() const { return m_shape_computed; }
-
- //! init shapes in kern param
- void init_shapes(
- megdnn::Reduce* opr, CompNode comp_node, DType dtype, Mode mode,
- TensorShape ishp, TensorShape oshp, const Param::DataType data_type);
-
- void setup_kern_params_layout_and_mode(
- Mode mode, DType inp_dtype, TensorShape& inp_shp, const Param::DataType);
-
- void check_shapes(const TensorShape& ishp, const TensorShape& oshp) {
- mgb_assert(m_prev_ishp.eq_shape(ishp) && m_prev_oshp.eq_shape(oshp));
- }
-
- //! update pointers in kern param; the tensors must have been allocated
- void update_ptr(
- const DeviceTensorND& input, const DeviceTensorND& dest,
- const DeviceTensorND& workspace);
-
- void execute(
- megdnn::Reduce* opr, const DeviceTensorND& input,
- const DeviceTensorND& dest);
-
- void record_execute_deps(ExecDependencyArray& deps) {
- if (m_elemwise_trans_opr) {
- deps.emplace_back(std::make_unique<intl::MegDNNGraphDep>(
- std::move(m_elemwise_trans_opr)));
- }
- if (m_typecvt_opr) {
- deps.emplace_back(
- std::make_unique<intl::MegDNNGraphDep>(std::move(m_typecvt_opr)));
- }
- deps.emplace_back(std::make_unique<ValueDep>(m_side_affect_wkspc.storage()));
- }
-
- private:
- struct KernParam {
- megdnn::TensorND input, output;
-
- //! param passed to megdnn
- megdnn::param::Reduce kparam;
-
- megdnn::Workspace workspace;
-
- KernParam(Mode mode, int32_t ra) : kparam{mode, ra} {}
- };
-
- struct SubWorkspace {
- size_t size, offset;
- size_t end() const { return size + offset; }
- };
-
- void update_kparam_for_elemwise_side_effect(
- CompNode comp_node, Mode mode, const Param::DataType data_type);
-
- bool m_shape_computed = false;
- std::vector<KernParam> m_kern_param;
- TensorShape m_prev_ishp, m_prev_oshp;
- SubWorkspace m_workspace_spec[3]; //! tmp output[2], kern workspce
-
- /*!
- * some reduce mode (like SUM_SQR) has side effect of element-wise
- * trans. If this is the case and there is no kernel param,
- * m_apply_side_effect would be non-null
- */
- thin_function<void(const DeviceTensorND& in, const DeviceTensorND& out)>
- m_apply_side_effect;
- std::unique_ptr<megdnn::Elemwise> m_elemwise_trans_opr;
- std::unique_ptr<megdnn::TypeCvt> m_typecvt_opr;
- std::unique_ptr<megdnn::Fill> m_fill_opr;
- DeviceTensorND m_side_affect_wkspc;
- };
-
- void Reduce::KernScheduler::setup_kern_params_layout_and_mode(
- Mode mode, DType inp_dtype, TensorShape& ishp,
- const Param::DataType data_type) {
- auto prev_dtype = inp_dtype;
- for (size_t idx = 0; idx < m_kern_param.size(); ++idx) {
- auto&& i = m_kern_param[idx];
-
- #if !MEGDNN_DISABLE_FLOAT16
- if (idx == 0 && data_type == Param::DataType::FLOAT_O32xC32) {
- i.input.layout.dtype = inp_dtype;
- i.output.layout.dtype = dtype::Float32();
- i.kparam.data_type = data_type;
- } else if (data_type == Param::DataType::FLOAT_O16xC32) {
- i.input.layout.dtype = prev_dtype;
- if (idx + 1 == m_kern_param.size()) {
- i.output.layout.dtype = dtype::Float16();
- i.kparam.data_type = data_type;
- } else {
- i.output.layout.dtype = dtype::Float32();
- i.kparam.data_type = Param::DataType::FLOAT_O32xC32;
- }
- } else
- #endif
- {
- mgb_assert(
- data_type == Param::DataType::DEFAULT ||
- (data_type == Param::DataType::FLOAT_O32xC32 && idx));
- i.input.layout.dtype = prev_dtype;
- i.output.layout.dtype = prev_dtype;
- i.kparam.data_type = Param::DataType::DEFAULT;
- }
- prev_dtype = i.output.layout.dtype;
-
- i.input.layout.init_contiguous_stride(ishp);
- ishp.shape[i.kparam.axis] = 1;
- i.output.layout.init_contiguous_stride(ishp);
- }
- if (mode == Mode::SUM_SQR) {
- for (size_t i = 1; i < m_kern_param.size(); ++i)
- m_kern_param[i].kparam.mode = Mode::SUM;
- }
- }
-
- void Reduce::KernScheduler::init_shapes(
- megdnn::Reduce* opr, CompNode comp_node, DType inp_dtype, Mode mode,
- TensorShape ishp, TensorShape oshp, const Param::DataType data_type) {
- mgb_assert(ishp.ndim && oshp.ndim);
-
- if (ishp.eq_shape(m_prev_ishp) && oshp.eq_shape(m_prev_oshp))
- return;
-
- m_prev_ishp = ishp;
- m_prev_oshp = oshp;
-
- m_kern_param.clear();
-
- if (oshp.is_scalar()) {
- // if ishp is non-contiguous, add_layout_constraint_contiguous would be
- // added; so we do not have to worry about this
- ishp.shape[0] = ishp.total_nr_elems();
- ishp.ndim = 1;
- }
-
- mgb_assert(
- oshp.ndim == ishp.ndim,
- "input and output ndim mismatch for reduction: ishp=%s oshp=%s",
- ishp.to_string().c_str(), oshp.to_string().c_str());
-
- for (size_t i = 0; i < ishp.ndim; ++i) {
- if (ishp.shape[i] != oshp.shape[i]) {
- mgb_assert(
- oshp.shape[i] == 1,
- "input and output shape mismatch for reduction: "
- "ishp=%s oshp=%s",
- ishp.to_string().c_str(), oshp.to_string().c_str());
- }
- }
-
- auto remove_axis = [](TensorShape& shp, size_t ax) {
- mgb_assert(shp.ndim > 1);
- for (auto i = ax + 1; i < shp.ndim; ++i)
- shp.shape[i - 1] = shp.shape[i];
- --shp.ndim;
- };
-
- // collapse consecutive shape-1 axes in oshp
- for (size_t i = 0; i < oshp.ndim; ++i) {
- auto start = i;
- while (i < oshp.ndim && oshp.shape[i] == 1)
- ++i;
-
- if (start + 1 < i) {
- for (auto j = start + 1; j < i; ++j)
- ishp.shape[start] *= ishp.shape[j];
-
- for (auto j = start + 1; j < i; ++j) {
- remove_axis(ishp, start + 1);
- remove_axis(oshp, start + 1);
- }
-
- i = start;
- }
- }
-
- for (uint32_t i = 0; i < ishp.ndim; ++i) {
- if (ishp.shape[i] != oshp.shape[i]) {
- mgb_assert(oshp.shape[i] == 1);
- m_kern_param.push_back({mode, static_cast<int32_t>(i)});
- }
- }
- // sort according to reduction size, so workspace can be smaller
- small_sort(
- m_kern_param.begin(), m_kern_param.end(),
- [&](const KernParam& a, const KernParam& b) {
- return ishp.shape[a.kparam.axis] > ishp.shape[b.kparam.axis];
- });
-
- // init kparam input/output layout
- setup_kern_params_layout_and_mode(mode, inp_dtype, ishp, data_type);
-
- // init workspace size
- memset(m_workspace_spec, 0, sizeof(m_workspace_spec));
-
- for (auto&& i : m_kern_param) {
- opr->param() = i.kparam;
- i.workspace.size = opr->get_workspace_in_bytes(i.input.layout, i.output.layout);
- update_max(m_workspace_spec[2].size, i.workspace.size);
- }
-
- mgb_assert(ishp.eq_shape(oshp));
-
- if (m_kern_param.size() >= 2) {
- m_workspace_spec[0].size = m_kern_param[1].input.layout.span().high_byte;
- }
- if (m_kern_param.size() >= 3) {
- m_workspace_spec[1].size = m_kern_param[2].input.layout.span().high_byte;
- }
-
- auto align = comp_node.get_mem_addr_alignment();
- for (int i = 0; i < 2; ++i) {
- m_workspace_spec[i + 1].offset =
- get_aligned_power2(m_workspace_spec[i].end(), align);
- }
-
- update_kparam_for_elemwise_side_effect(comp_node, mode, data_type);
-
- m_shape_computed = true;
- }
-
- void Reduce::KernScheduler::update_kparam_for_elemwise_side_effect(
- CompNode comp_node, Mode mode, const Param::DataType data_type) {
- m_apply_side_effect = nullptr;
- m_elemwise_trans_opr.reset();
- m_typecvt_opr.reset();
- if (!m_kern_param.empty()) {
- // no need to set m_apply_side_effect
- return;
- } /* else */
- // case A: input.layout == output.layout
- // case B: input.total_nr_elems == 1 and output is a scalar
-
- if (mode == Mode::SUM_SQR) {
- m_elemwise_trans_opr =
- intl::get_megdnn_handle(comp_node)->create_operator<megdnn::Elemwise>();
- m_elemwise_trans_opr->param() = {Elemwise::Mode::MUL};
- }
- if (data_type != Param::DataType::DEFAULT) {
- m_side_affect_wkspc = DeviceTensorND{comp_node, dtype::Float32()};
- m_typecvt_opr =
- intl::get_megdnn_handle(comp_node)->create_operator<megdnn::TypeCvt>();
- }
- if (!m_typecvt_opr && !m_elemwise_trans_opr)
- return;
-
- m_apply_side_effect = [this](const DeviceTensorND& in, const DeviceTensorND& out) {
- if (m_typecvt_opr) {
- m_side_affect_wkspc.resize(in.shape());
- }
- if (!m_elemwise_trans_opr) {
- mgb_assert(m_typecvt_opr);
- m_typecvt_opr->exec(in.as_megdnn(), out.as_megdnn());
- return;
- }
- auto im = in.as_megdnn();
- megdnn::TensorND wm;
- if (m_typecvt_opr && in.dtype() != m_side_affect_wkspc.dtype()) {
- m_side_affect_wkspc.resize(in.shape());
- wm = m_side_affect_wkspc.as_megdnn();
- m_typecvt_opr->exec(im, wm);
- } else {
- wm = im;
- }
- if (m_typecvt_opr && wm.layout.dtype != out.dtype()) {
- m_elemwise_trans_opr->exec({wm, wm}, wm);
- m_typecvt_opr->exec(wm, out.as_megdnn());
- } else {
- auto&& wshp = wm.layout;
- if (wshp.ndim != out.layout().ndim) {
- // to ensure that wkspc.ndim equals out.ndim in the case:
- // wkspc.shape=(1, 1, ..., 1) and out.shape=(1), otherwise it
- // may lead the 'TensorShape Dimension' assertion failed in
- // the following broadcast operator
- mgb_assert(wshp.total_nr_elems() == 1 && out.layout().ndim == 1);
- wshp.ndim = 1;
- }
- m_elemwise_trans_opr->exec({wm, wm}, out.as_megdnn());
- }
- };
- }
-
- void Reduce::KernScheduler::update_ptr(
- const DeviceTensorND& input, const DeviceTensorND& dest,
- const DeviceTensorND& workspace) {
- auto dtype = dest.layout().dtype;
- mgb_assert(dtype.valid());
- mgb_assert(m_shape_computed);
-
- if (workspace_size()) {
- mgb_assert(
- workspace.layout().dtype == dtype::Byte() &&
- workspace.layout().ndim == 1 &&
- workspace.shape()[0] >= workspace_size());
- }
-
- if (m_kern_param.empty())
- return;
-
- mgb_assert(
- input.layout().total_nr_elems() ==
- m_kern_param[0].input.layout.total_nr_elems());
- mgb_assert(
- dest.shape().total_nr_elems() ==
- m_kern_param.back().output.layout.total_nr_elems());
- auto in_tensor = input.as_megdnn();
- in_tensor.layout = m_kern_param[0].input.layout;
- m_kern_param[0].input = in_tensor;
-
- dt_byte *workspace_begin = workspace_size()
- ? const_cast<dt_byte*>(workspace.raw_ptr())
- : nullptr,
- *tmp_reduce_ptr[2] =
- {workspace_begin + m_workspace_spec[0].offset,
- workspace_begin + m_workspace_spec[1].offset},
- *kern_workspace = workspace_begin + m_workspace_spec[2].offset;
- for (size_t i = 0; i < m_kern_param.size() - 1; ++i) {
- auto optr = tmp_reduce_ptr[i % 2];
- m_kern_param[i].output.reset_ptr(optr);
- m_kern_param[i + 1].input.reset_ptr(optr);
- }
- for (auto&& i : m_kern_param)
- i.workspace.raw_ptr = kern_workspace;
- auto out_tensor = dest.as_megdnn();
- out_tensor.layout = m_kern_param.back().output.layout;
- m_kern_param.back().output = out_tensor;
- }
-
- void Reduce::KernScheduler::execute(
- megdnn::Reduce* opr, const DeviceTensorND& input, const DeviceTensorND& dest) {
- if (m_apply_side_effect) {
- mgb_assert(m_kern_param.empty());
- m_apply_side_effect(input, dest);
- return;
- }
-
- mgb_assert(!m_kern_param.empty());
-
- // empty input
- if (input.shape_valid() && input.empty()) {
- auto mode = m_kern_param[0].kparam.mode;
- if (!m_fill_opr) {
- m_fill_opr = intl::get_megdnn_handle(dest.comp_node())
- ->create_operator<megdnn::Fill>();
- }
- std::string err_msg;
- switch (mode) {
- case Reduce::Mode::SUM:
- if (!dest.empty()) {
- m_fill_opr->param() = 0;
- m_fill_opr->exec(dest.as_megdnn(), {});
- }
- break;
- case Reduce::Mode::PRODUCT:
- if (!dest.empty()) {
- m_fill_opr->param() = 1;
- m_fill_opr->exec(dest.as_megdnn(), {});
- }
- break;
- case Reduce::Mode::MEAN:
- err_msg = "mean";
- break;
- case Reduce::Mode::MIN:
- err_msg = "min";
- break;
- case Reduce::Mode::MAX:
- err_msg = "max";
- break;
- case Reduce::Mode::SUM_SQR:
- err_msg = "sum_sqr";
- break;
- default:
- mgb_throw(MegBrainError, "bad reduce mode");
- }
- if (!err_msg.empty()) {
- mgb_throw(
- MegBrainError, "empty input is not allowed for reduce mode: %s",
- err_msg.c_str());
- }
- return;
- }
- mgb_assert(
- input.layout().is_contiguous() &&
- input.raw_ptr() == m_kern_param[0].input.raw_ptr() &&
- dest.raw_ptr() == m_kern_param.back().output.raw_ptr());
- for (auto&& i : m_kern_param) {
- opr->param() = i.KernParam::kparam;
- opr->exec(i.input, i.output, i.workspace);
- }
- }
-
- class Reduce::OutTensorShapeExtender {
- public:
- OutTensorShapeExtender(const TensorShape& ishp, const TensorShape& oshp)
- : m_oshp(oshp) {
- mgb_assert(
- oshp.ndim <= ishp.ndim,
- "output ndim should be less and equal than input ndim for "
- "reduction: "
- "ishp=%s oshp=%s",
- ishp.to_string().c_str(), oshp.to_string().c_str());
- // Ex. ishp = (a, b, c, d), oshp = (c, d)
- if (!oshp.is_scalar() && ishp.ndim != oshp.ndim) {
- size_t ndim_diff = ishp.ndim - oshp.ndim;
- auto&& canonized_oshp = m_canonized_oshp_storage.emplace(oshp);
- for (size_t i = 0; i < ishp.ndim; ++i)
- if (i < ndim_diff)
- canonized_oshp[i] = 1;
- else
- canonized_oshp[i] = oshp[i - ndim_diff];
- canonized_oshp.ndim = ishp.ndim;
- }
- }
-
- const TensorShape& get() const {
- return m_canonized_oshp_storage.valid() ? m_canonized_oshp_storage.val()
- : m_oshp;
- }
-
- private:
- Maybe<TensorShape> m_canonized_oshp_storage;
- const TensorShape& m_oshp;
- };
-
- MGB_DYN_TYPE_OBJ_FINAL_IMPL(Reduce);
- Reduce::Reduce(
- VarNode* inp, VarNode* target_shape, const Param& param,
- const OperatorNodeConfig& config)
- : Super{inp->owner_graph(),
- config,
- ssprintf("reduce%d", static_cast<int>(param.mode)),
- {inp}},
- m_param{param},
- m_kern_scheduler{std::make_unique<KernScheduler>()} {
- add_input({inp});
-
- if (inp->dtype().enumv() == DTypeEnum::Quantized8Asymm &&
- inp->dtype().category() == DTypeCategory::QUANTIZED) {
- mgb_assert(
- param.mode != Param::Mode::PRODUCT,
- "Reduce does not support PRODUCT mode on quantized input");
- mgb_assert(
- param.mode != Param::Mode::SUM_SQR,
- "Reduce does not support SUM_SQR mode on quantized input");
- mgb_assert(
- param.mode != Param::Mode::SUM,
- "Reduce does not support SUM mode on quantized input");
- }
-
- DType out_dtype;
- switch (param.data_type) {
- case Param::DataType::DEFAULT:
- out_dtype = inp->dtype();
- break;
- #if !MEGDNN_DISABLE_FLOAT16
- case Param::DataType::FLOAT_O16xC32:
- out_dtype = dtype::Float16();
- break;
- case Param::DataType::FLOAT_IO16xC32:
- mgb_assert(false);
- #endif
- case Param::DataType::FLOAT_O32xC32:
- out_dtype = dtype::Float32();
- break;
- case Param::DataType::QUINT_I8xO32:
- out_dtype = dtype::QuantizedS32(
- inp->dtype().param<dtype::Quantized8Asymm>().scale);
- break;
- case Param::DataType::QINT_I8xO32:
- out_dtype =
- dtype::QuantizedS32(inp->dtype().param<dtype::QuantizedS8>().scale);
- break;
- default:
- mgb_throw(GraphError, "invalid param data_type: %d", int(param.data_type));
- }
- add_output(None)->add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE).dtype(out_dtype);
- cg::add_workspace_output(this);
-
- add_equivalence_component<PODHash<Param>>(&m_param);
-
- if (param.axis >= -MEGDNN_MAX_NDIM && param.axis < MEGDNN_MAX_NDIM) {
- mgb_throw_if(
- target_shape, GraphError,
- "could not specify both axis and target shape");
- m_is_symtshp = false;
- } else {
- mgb_throw_if(
- !target_shape, GraphError, "neither axis or target_shape specified");
- add_input({target_shape});
- m_is_symtshp = true;
-
- outshape_by_symvar_enable(0, 1);
- }
- }
-
- Reduce::~Reduce() = default;
-
- SymbolVar Reduce::make(
- SymbolVar src, Param param, SymbolVar target_shape,
- const OperatorNodeConfig& config) {
- if (param.data_type == Param::DataType::FLOAT_IO16xC32) {
- mgb_log_warn(
- "DataType FLOAT_IO16xC32 has been deprecated "
- "use FLOAT_O16xC32 instead");
- param.data_type = Param::DataType::FLOAT_O16xC32;
- }
-
- if (param.mode == Mode::SUM && src.node()->owner_opr()->same_type<Elemwise>()) {
- // replace sum(x^2) by sum_sqr(x)
- auto&& opr = src.node()->owner_opr()->cast_final<Elemwise>();
- if (opr.param().mode == Elemwise::Mode::POW) {
- mgb_assert(opr.input().size() == 2);
- auto pow = SymbolVar{opr.input(1)}.as_immutable_scalar();
- if (pow.valid() && pow->get_cast<float>() == 2) {
- src = opr.input(0);
- param.mode = Mode::SUM_SQR;
- }
- }
- }
- return src.insert_single_output_opr<Reduce>(
- src.node(), target_shape.node(), param, config);
- }
-
- void Reduce::outshape_by_symvar_do_get_output_shape(
- TensorShape& dest, const ShapeInferInfo& shpinfo) {
- cg::copy_tensor_value_to_shape(dest, *shpinfo.shpval_inp_val.at(0));
- }
-
- void Reduce::init_output_static_infer_desc() {
- using namespace cg::static_infer;
- auto&& mgr = owner_graph()->static_infer_manager();
-
- // infer output shape
- if (m_is_symtshp) {
- // reduce to target shape
- Super::init_output_static_infer_desc();
- } else {
- // reduce along axis
- auto infer_shape = [this](TensorShape& dest, const InpVal& inp) {
- dest = inp.val.at(0).shape();
- mgb_assert(
- m_param.axis < static_cast<int>(dest.ndim) &&
- m_param.axis >= -static_cast<int>(dest.ndim),
- "invalid axis for reduction: shape=%s axis=%d",
- dest.to_string().c_str(), m_param.axis);
- int real_axis = m_param.axis;
- if (real_axis < 0)
- real_axis += dest.ndim;
- dest.shape[real_axis] = 1;
- return true;
- };
- mgr.register_shape_infer(
- output(0),
- {SourceType::DEP, {{input(0), DepType::SHAPE}}, infer_shape});
- }
-
- // infer workspace
- auto infer_workspace = [this](TensorShape& dest, const InpVal& inp) {
- init_kern_sched_shape(inp.val[0].shape(), inp.val[1].shape());
- dest.ndim = 1;
- dest.shape[0] = m_kern_scheduler->workspace_size();
- return true;
- };
- mgr.register_shape_infer(
- output(1), {SourceType::DEP,
- {{input(0), DepType::SHAPE}, {output(0), DepType::SHAPE}},
- infer_workspace});
-
- // infer value
-
- static StaticInferOpr<megdnn::Reduce> static_infer_opr;
- auto infer_value = [this](DeviceTensorND& dest, const InpVal& inp) {
- DeviceTensorND workspace;
- auto sopr = static_infer_opr.lock();
- perform(m_param.mode, dest, workspace, inp.val[0].value(), output(0)->dtype(),
- inp.val.at(1).shape(), sopr(), m_param.data_type);
- return true;
- };
-
- mgr.register_value_infer(
- output(0), {SourceType::DEP,
- {{input(0), DepType::VALUE}, {output(0), DepType::SHAPE}},
- infer_value});
- }
-
- void Reduce::init_kern_sched_shape(const TensorShape& ishp, const TensorShape& oshp) {
- OutTensorShapeExtender extender(ishp, oshp);
- auto&& canonized_oshp = extender.get();
- m_kern_scheduler->init_shapes(
- static_cast<megdnn::Reduce*>(megdnn_opr()), comp_node(), input(0)->dtype(),
- m_param.mode, ishp, canonized_oshp, m_param.data_type);
- }
-
- cg::OperatorNodeBase::OprEventCallback Reduce::get_opr_event_callback() {
- auto on_mem_status_changed = [this]() {
- auto&& ishp = input(0)->shape();
- auto&& oshp = output(0)->shape();
- OutTensorShapeExtender extender(ishp, oshp);
- auto&& canonized_oshp = extender.get();
- m_kern_scheduler->check_shapes(input(0)->shape(), canonized_oshp);
- m_kern_scheduler->update_ptr(
- input(0)->dev_tensor(), output(0)->dev_tensor(),
- output(1)->shape()[0] ? output(1)->dev_tensor() : DeviceTensorND{});
- };
- return {on_mem_status_changed};
- }
-
- void Reduce::mem_plan_fwd_in2out_readonly() {
- init_kern_sched_shape(input(0)->shape(), output(0)->shape());
-
- if (!m_kern_scheduler->has_actual_computing()) {
- // forward memory if no actual computing needed
-
- if (!output(0)->mem_plan().valid()) {
- // output(0) is dynamic but current is staic alloc phase (for
- // workspace)
- return;
- }
- auto&& ily = input(0)->layout();
- auto&& oly = output(0)->layout();
- const TensorLayout* fwd_spec = nullptr;
- Maybe<TensorLayout> ily_modified_storage;
-
- if (!ily.eq_shape(oly)) {
- auto&& ily_modified = ily_modified_storage.emplace(ily);
- mgb_assert(ily.ndim > oly.ndim);
- for (size_t i = 0; i < ily.ndim - oly.ndim; ++i)
- mgb_assert(ily.shape[i] == 1);
- ily_modified = ily_modified.reshape(oly);
- fwd_spec = &ily_modified;
- } else {
- fwd_spec = &ily;
- }
- m_mem_fwd_success = output(0)->set_fwd_in2out_readonly(
- input(0), SubTensorSpec::make_from_layout(*fwd_spec));
- }
- }
-
- void Reduce::add_input_layout_constraint() {
- if (!cg::is_static_var_shape(output(0))) {
- // output shape can not be inferred; require contiguous to be safe
- input(0)->add_layout_constraint_contiguous();
- } else {
- auto check = [this](const TensorLayout& ily) {
- auto&& mgr = owner_graph()->static_infer_manager();
- auto oshp = mgr.infer_shape(output(0));
- init_kern_sched_shape(ily, oshp);
- if (m_kern_scheduler->has_actual_computing())
- return ily.is_contiguous();
- return true;
- };
- input(0)->add_layout_constraint(check);
- }
- }
-
- void Reduce::scn_do_execute() {
- auto&& inp = input(0)->dev_tensor();
- auto&& out = output(0)->dev_tensor();
- auto&& ishp = input(0)->shape();
- auto&& oshp = output(0)->shape();
- const DeviceTensorND* out_ptr;
- Maybe<DeviceTensorND> canonized_storage;
- OutTensorShapeExtender extender(ishp, oshp);
- auto&& canonized_oshp = extender.get();
- if (canonized_oshp.ndim != out.shape().ndim) {
- auto&& canonized_out = canonized_storage.emplace(out);
- canonized_out.reset(
- canonized_out.storage(),
- canonized_out.layout().reshape(canonized_oshp));
- out_ptr = &canonized_out;
- } else {
- out_ptr = &out;
- }
- // shape initialized either in deducing workspace,
- // mem_plan_fwd_in2out_readonly, or check input layout
- m_kern_scheduler->check_shapes(inp.shape(), out_ptr->shape());
-
- if (m_kern_scheduler->has_actual_computing()) {
- m_kern_scheduler->update_ptr(
- inp, *out_ptr,
- output(1)->shape()[0] ? output(1)->dev_tensor() : DeviceTensorND{});
- m_kern_scheduler->execute(
- static_cast<megdnn::Reduce*>(megdnn_opr()), inp, *out_ptr);
- } else {
- // no reduction needed, just forward
- if (m_mem_fwd_success) {
- mgb_assert(
- inp.raw_ptr() == out_ptr->raw_ptr() &&
- out_ptr->layout().total_nr_elems() ==
- inp.layout().total_nr_elems());
- } else {
- if (!out_ptr->shape().eq_shape(inp.shape())) {
- mgb_assert(
- out_ptr->shape().is_scalar() &&
- inp.shape().total_nr_elems() == 1);
- out_ptr->sub(SubTensorSpec::make_from_layout(inp.layout()))
- .copy_from_fixlayout(inp);
- } else {
- out_ptr->copy_from_fixlayout(inp);
- }
- }
- }
- }
-
- void Reduce::perform(
- Mode mode, DeviceTensorND& dest, DeviceTensorND& workspace,
- const DeviceTensorND& input, const DType& target_dtype,
- const TensorShape& target_shape, intl::UniqPtrWithCN<megdnn::Reduce>& opr,
- const Param::DataType data_type) {
- mgb_assert(
- !dest.storage().comp_node_valid() || opr.comp_node() == dest.comp_node());
- KernScheduler ksched;
- OutTensorShapeExtender extender(input.shape(), target_shape);
- auto&& canonized_oshp = extender.get();
- ksched.init_shapes(
- opr.get(), opr.comp_node(), input.layout().dtype, mode, input.shape(),
- canonized_oshp, data_type);
-
- if (!ksched.has_actual_computing()) {
- mgb_assert(target_shape.total_nr_elems() == input.layout().total_nr_elems());
- dest.copy_from(input);
- dest.reset(dest.storage(), {target_shape, dest.dtype()});
- return;
- }
-
- workspace.comp_node(opr.comp_node()).dtype(dtype::Byte());
- size_t workspace_size = ksched.workspace_size();
- DeviceTensorND input_contig_storage;
- const DeviceTensorND* input_contig = &input;
- if (!input.layout().is_contiguous()) {
- auto offset = get_aligned_power2(
- workspace_size, opr.comp_node().get_mem_addr_alignment());
- workspace_size = offset + input.dtype().size(input.shape().total_nr_elems());
-
- workspace.resize({workspace_size});
- input_contig_storage
- .reset(workspace.storage().sub(offset), {input.shape(), input.dtype()})
- .copy_from(input);
- input_contig = &input_contig_storage;
- } else {
- workspace.resize({workspace_size});
- }
-
- opr.comp_node().activate();
- dest.comp_node(opr.comp_node()).dtype(target_dtype).resize(target_shape);
- ksched.update_ptr(*input_contig, dest, workspace);
- ksched.execute(opr.get(), *input_contig, dest);
- }
-
- Reduce::NodeProp* Reduce::do_make_node_prop() const {
- auto ret = Super::do_make_node_prop();
- ret->add_dep_type_existing_var(input(0), NodeProp::DepType::VALUE_ALLOW_EMPTY);
- return ret;
- }
-
- void Reduce::create_megdnn_opr() {
- set_megdnn_opr(
- intl::get_megdnn_handle(comp_node())->create_operator<megdnn::Reduce>());
- }
-
- #if MGB_ENABLE_GRAD
- MGB_IMPL_OPR_GRAD(Reduce) {
- for (size_t i = 1; i < opr.output().size(); ++i)
- mgb_assert(!out_grad[i]);
- if (wrt_idx || opr.input(0)->dtype().category() != DTypeCategory::FLOAT)
- return InvalidGrad::make(opr, wrt_idx);
- SymbolVar og{out_grad[0]}, iv{opr.input(0)}, ov{opr.output(0)};
- constexpr auto cmv = Elemwise::Mode::COND_LEQ_MOV;
- using Mode = Reduce::Mode;
- SymbolVar grad = [&]() {
- switch (opr.param().mode) {
- case Mode::SUM:
- return Broadcast::make(og, GetVarShape::make(iv));
- case Mode::SUM_SQR:
- return (og * og.make_scalar_dt(2) * iv);
- case Mode::PRODUCT:
- return ((og * ov) / iv);
- case Mode::MIN:
- return Elemwise::make({iv, ov, og}, cmv);
- case Mode::MAX:
- return Elemwise::make({ov, iv, og}, cmv);
- case Mode::MEAN: {
- auto og_shape = opr::GetVarShape::make(og),
- iv_shape = opr::GetVarShape::make(iv),
- scale =
- div(opr::reduce_prod(og_shape, og_shape.make_scalar(1)),
- opr::reduce_prod(iv_shape, iv_shape.make_scalar(1)));
- return scale * Broadcast::make(og, GetVarShape::make(iv));
- }
- default:
- mgb_throw(MegBrainError, "bad reduce mode");
- }
- }();
- grad = TypeCvt::make(grad, iv.dtype());
- return grad.node();
- }
- #endif
-
- void Reduce::record_execute_deps(ExecDependencyArray& deps) {
- record_megdnn_opr(deps);
- m_kern_scheduler->record_execute_deps(deps);
- }
-
- /* =========================== PowC =========================== */
-
- MGB_DYN_TYPE_OBJ_FINAL_IMPL(PowC);
-
- PowC::PowC(VarNode* i0, const Param& param, const OperatorNodeConfig& config)
- : Super(OperatorNodeBaseCtorParam{
- i0->owner_graph(), config, ssprintf("powc_%g", param.exp), {i0}}) {
- init_megdnn_opr(*this, param);
- add_input({i0});
- output(0)->add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
- intl::MegDNNOprInitPostCtor<PowC>::apply(*this);
- }
-
- SymbolVar PowC::make(
- SymbolVar x, const Param& param, const OperatorNodeConfig& config) {
- if (almost_equal(param.exp, 1.f)) {
- return x;
- }
- if (almost_equal(param.exp, 0.f)) {
- return x.make_scalar_dt(1).broadcast(x.symshape());
- }
- return x.insert_single_output_opr<PowC>(x.node(), param, config);
- }
-
- void PowC::add_input_layout_constraint() {
- input(0)->add_layout_constraint_monotone();
- }
-
- void PowC::mem_plan_fwd_in2out_writable() {
- output(0)->set_fwd_in2out_writable(input(0));
- }
-
- void PowC::init_output_static_infer_desc() {
- Super::init_output_static_infer_desc();
- static StaticInferOpr<megdnn::PowC> static_infer_opr;
- using namespace cg::static_infer;
-
- auto infer_value = [this](DeviceTensorND& dest, const InpVal& inp) {
- auto infer_opr_lock = static_infer_opr.lock();
- auto&& infer_opr = infer_opr_lock();
- infer_opr->param() = this->param();
- auto&& ival = inp.val[0].value().as_megdnn();
- infer_opr->exec(ival, dest.resize(ival.layout).as_megdnn());
- return true;
- };
- owner_graph()->static_infer_manager().register_value_infer(
- output(0), {SourceType::DEP, {{input(0), DepType::VALUE}}, infer_value});
- }
-
- void PowC::scn_do_execute() {
- if (input(0)->dev_tensor().empty()) {
- mgb_assert(output(0)->dev_tensor().empty());
- return;
- }
- mgb_assert(!output(0)->dev_tensor().empty());
- Super::scn_do_execute();
- }
-
- PowC::NodeProp* PowC::do_make_node_prop() const {
- auto ret = Super::do_make_node_prop();
- ret->add_dep_type_existing_var(input(0), NodeProp::DepType::VALUE_ALLOW_EMPTY);
- return ret;
- }
-
- #if MGB_ENABLE_GRAD
- MGB_IMPL_OPR_GRAD(PowC) {
- auto exp = opr.param().exp;
- return (exp * SymbolVar{out_grad[0]} *
- PowC::make(opr.input(0), exp - 1, opr.config()))
- .node();
- }
- #endif
-
- // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}
|