|
- #include "./grad.h"
-
- #include "megbrain/imperative/backward_graph_opt.h"
- #include "megbrain/imperative/ops/autogen.h"
- #include "megbrain/imperative/proxy_graph_detail.h"
- #include "megbrain/imperative/resource_manager.h"
- #include "megbrain/utils/mempool.h"
-
- #include "range/v3/all.hpp"
-
- #include "./helper.h"
- #include "./transformation.h"
-
- namespace py = pybind11;
- namespace views = ranges::views;
-
- namespace mgb::imperative::python {
-
- namespace {
- std::unordered_map<std::shared_ptr<GradKey>, GradKeyWrapper*> grad_key_map;
- }
-
- GradKeyWrapper::GradKeyWrapper() {}
-
- void GradKeyWrapper::attach(PyObject* const* args, size_t nargs) {
- if (nargs != 2) {
- throw py::type_error("expect 2 arguments");
- }
- auto* tw = TensorWrapper::try_cast(args[0]);
- if (!tw) {
- throw py::type_error("argument 1 must be Tensor");
- }
- py::object callback;
- if (args[1] != Py_None) {
- callback = py::reinterpret_borrow<py::object>(args[1]);
- }
- GenericFunction generic_callback = [=](Span<ValueRef> inputs) -> ValueRefList {
- mgb_assert(inputs.size() == 1);
- if (callback) {
- callback(TensorWrapper::make(py_tensor_type, inputs[0]));
- }
- return {};
- };
- auto attached_value = imperative::apply(
- AttachGrad(m_key), tw->m_tensor->data(),
- FunctionValue::make(generic_callback))[0];
- tw->m_tensor->reset(attached_value);
- }
-
- void GradKeyWrapper::backward(GradKeyWrapper* self, py::list tensors, py::list grads) {
- std::vector<ValueRef> args;
- mgb_assert(tensors.size() == grads.size());
- for (auto&& tensor : tensors) {
- args.push_back(TensorWrapper::try_cast(tensor.ptr())->m_tensor->data());
- }
- for (auto&& grad : grads) {
- args.push_back(TensorWrapper::try_cast(grad.ptr())->m_tensor->data());
- }
- imperative::apply(GradBackward(self->m_key), {args.data(), args.size()});
- }
-
- pybind11::function GradKeyWrapper::get_backward_closure(
- GradKeyWrapper* self, py::list tensors) {
- std::vector<ValueRef> args;
- for (auto&& tensor : tensors) {
- args.push_back(TensorWrapper::try_cast(tensor.ptr())->m_tensor->data());
- }
- auto closure_value = imperative::apply(GetBackwardColsure(self->m_key), args)[0];
- auto closure = closure_value.as_ref<FunctionValue>();
- auto py_function = [closure](std::vector<TensorWrapper*> tensors) {
- std::vector<ValueRef> args;
- for (auto* tw : tensors) {
- args.push_back(tw->m_tensor->data());
- }
- (*closure)(args);
- };
- return pybind11::cpp_function(py_function);
- }
-
- PyObject* GradKeyWrapper::get_name() {
- return py::cast(m_name).release().ptr();
- }
-
- void GradKeyWrapper::set_name(py::handle name) {
- m_name = py::cast<std::string>(name);
- if (m_key) {
- m_key->name(m_name);
- }
- }
-
- PyObject* GradKeyWrapper::is_attached_to(PyObject* const* args, size_t nargs) {
- if (nargs != 1) {
- PyErr_SetString(PyExc_TypeError, "expect 1 argument");
- return nullptr;
- }
- auto* tw = TensorWrapper::try_cast(args[0]);
- if (!tw) {
- PyErr_SetString(PyExc_TypeError, "expect Tensor");
- return nullptr;
- }
- if (imperative::apply(IsAttachedTo(m_key), tw->m_tensor->data())[0]
- .cast<BoolValue>()) {
- Py_RETURN_TRUE;
- }
- Py_RETURN_FALSE;
- }
-
- void GradKeyWrapper::enter() {
- m_transformation = std::make_shared<GradTransformation>();
- m_key = m_transformation->key();
- m_key->name(m_name);
- grad_key_map[m_key] = this;
- m_transformation_guard =
- TransformationManager::get_instance()
- .register_at<TransformationManager::Grad>(m_transformation);
- }
-
- void GradKeyWrapper::exit() {
- m_transformation_guard.reset();
- grad_key_map.erase(m_key);
- m_key = {};
- m_transformation.reset();
- }
-
- void GradKeyWrapper::suppress() {
- m_transformation->suppress();
- }
-
- void GradKeyWrapper::resume() {
- m_transformation->resume();
- }
-
- GradKeyWrapper* GradKeyWrapper::get(std::shared_ptr<GradKey> key) {
- return grad_key_map.at(key);
- }
-
- GradKeyWrapper::~GradKeyWrapper() {}
-
- } // namespace mgb::imperative::python
|